Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 127(37): 7988-7995, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37682586

ABSTRACT

Near-infrared (NIR) J-aggregates attract increasing attention in many areas, especially in biomedical applications, as they combine the advantages of NIR spectroscopy with the unique J-aggregation properties of organic dyes. They enhance light absorption and have been used as effective biological imaging and therapeutic agents to achieve high-resolution imaging or effective phototherapy in vivo. In this work, we present novel J-aggregates composed of the well-known cyanine molecules. Cyanines are one of the few types of molecules whose absorption and emission can be shifted over a broad spectral range, from the ultraviolet (UV) to the NIR regime. They can easily transform into J-aggregates with narrow absorption and emission peaks, which is accompanied by a red shift in their spectra. In this work, we show, for the first time, that the tricarbocyanine dye (IR 820) has two sharp fluorescence emission bands in the NIR-II region with high photostability. These emission bands can be tuned to a desired wavelength in the range of 1150-1560 and 1675 nm, with a linear dependence on the excitation wavelength. Cryogenic transmission electron microscopy (cryo-TEM) images are presented, and combined with molecular modeling analysis, they confirm IR 820 π-stacked self-assembled fibrous structures.

3.
ChemistryOpen ; 11(11): e202200103, 2022 11.
Article in English | MEDLINE | ID: mdl-36423932

ABSTRACT

Cyanines are one of the few kinds of molecules whose absorbance and emission can be shifted in a broad spectral range from the ultraviolet to the near infrared. They can easily transform into J-aggregates with narrow absorption and emission peaks, along with a redshift in their spectra. This mini-review presents cyanine dyes and their J-aggregates and discusses their structure and spectral properties that illustrate their specificities. We summarize the theoretical and experimental state of the art on cyanine J-aggregates and their applications, also laying the groundwork for cyanine J-aggregates synthesis and characterization methods.


Subject(s)
Coloring Agents , Quinolines , Carbocyanines/chemistry , Coloring Agents/chemistry , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL