Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 18(3): 2033-2076, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33892536

ABSTRACT

Content-based image analysis and computer vision techniques are used in various health-care systems to detect the diseases. The abnormalities in a human eye are detected through fundus images captured through a fundus camera. Among eye diseases, glaucoma is considered as the second leading case that can result in neurodegeneration illness. The inappropriate intraocular pressure within the human eye is reported as the main cause of this disease. There are no symptoms of glaucoma at earlier stages and if the disease remains unrectified then it can lead to complete blindness. The early diagnosis of glaucoma can prevent permanent loss of vision. Manual examination of human eye is a possible solution however it is dependant on human efforts. The automatic detection of glaucoma by using a combination of image processing, artificial intelligence and computer vision can help to prevent and detect this disease. In this review article, we aim to present a comprehensive review about the various types of glaucoma, causes of glaucoma, the details about the possible treatment, details about the publicly available image benchmarks, performance metrics, and various approaches based on digital image processing, computer vision, and deep learning. The review article presents a detailed study of various published research models that aim to detect glaucoma from low-level feature extraction to recent trends based on deep learning. The pros and cons of each approach are discussed in detail and tabular representations are used to summarize the results of each category. We report our findings and provide possible future research directions to detect glaucoma in conclusion.


Subject(s)
Artificial Intelligence , Glaucoma , Fundus Oculi , Glaucoma/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted
2.
PLoS One ; 14(7): e0219833, 2019.
Article in English | MEDLINE | ID: mdl-31323065

ABSTRACT

The classification of high-resolution satellite images is an open research problem for computer vision research community. In last few decades, the Bag of Visual Word (BoVW) model has been used for the classification of satellite images. In BoVW model, an orderless histogram of visual words without any spatial information is used as image signature. The performance of BoVW model suffers due to this orderless nature and addition of spatial clues are reported beneficial for scene and geographical classification of images. Most of the image representations that can compute image spatial information as are not invariant to rotations. A rotation invariant image representation is considered as one of the main requirement for satellite image classification. This paper presents a novel approach that computes the spatial clues for the histograms of BoVW model that is robust to the image rotations. The spatial clues are calculated by computing the histograms of orthogonal vectors. This is achieved by calculating the magnitude of orthogonal vectors between Pairs of Identical Visual Words (PIVW) relative to the geometric center of an image. The comparative analysis is performed with recently proposed research to obtain the best spatial feature representation for the satellite imagery. We evaluated the proposed research for image classification using three standard image benchmarks of remote sensing. The results and comparisons conducted to evaluate this research show that the proposed approach performs better in terms of classification accuracy for a variety of datasets based on satellite images.


Subject(s)
Geography , Models, Theoretical , Satellite Imagery , Algorithms , Geographic Information Systems , Geographic Mapping , Maps as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...