Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 112(1): 328-335, 2023 01.
Article in English | MEDLINE | ID: mdl-35872024

ABSTRACT

Acute liver damage (ALD) can cause biochemical and pathological changes, which can lead to major complications and even death. The goal of the study was to examine the therapeutic efficacy of liposomes of Bergenia ciliata extract against thioacetamide-induced liver damage in rats. Liposomal batches of B. ciliata extract were prepared by altering the kind and amount of phospholipids and characterized through various physiochemical properties such as laser diffraction, TEM, encapsulation efficiency, stability and in-vitro release studies. In-vivo hepatoprotective studies were performed on TAA-induced acute hepatic damage model. Further, in-silico studies of bergenin against the three hepatic damage markers viz. TGF-ß1, TNF-α and interleukin-6 were also performed. Laser diffraction and TEM showed that most stable liposome batch of B. ciliata extract were in the range of 678-1170 nm with encapsulation efficiency of 84.3±3.5. Extract was found to be rapidly dissociated from B. ciliata liposomes in HCl than PBS, according to in-vitro release data. In-vivo data revealed a significant decline in LFT indicators, amelioration of pathological changes and high bergenin bioavailability in the liposomal group. Protective activity of bergenin against ALD targets like TGF-ß1, TNF-α and interleukin-6 was anticipated via molecular docking research. As a result, the current findings of the study indicate that B. ciliata liposomes and bergenin have promising ameliorative potential in the management of ALD.


Subject(s)
Liposomes , Plant Extracts , Saxifragaceae , Animals , Rats , Interleukin-6 , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saxifragaceae/chemistry , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha
3.
ACS Omega ; 7(26): 22639-22656, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35811873

ABSTRACT

To discover anticancer drugs with novel structures and expand our research scope, pyrazoline derivatives (3a-3l) were designed and synthesized through cyclization of chalcones with thiosemicarbazide/semicarbazide in CH3COOH as a solvent. All newly synthesized pyrazoline derivatives were fully characterized using several spectroscopic experiments such as 1H, 13C NMR, FT-IR spectroscopy, and mass analysis. By HPLC, the purity of all analogs was found above 95% and both lead compounds (3a and 3h) were also validated by HRMS. Anticancer activity of synthesized pyrazoline derivatives (3a-3l) was investigated by the MTT assay against the human lung cancer cell (A549), human cervical cancer cell (HeLa), and human primary normal lung cells (HFL-1). Staurosporine (STS) was used as a standard drug. The anticancer results showed that two potent analogs 3a and 3h exhibit excellent activity against A549 (IC50 = 13.49 ± 0.17 and 22.54 ± 0.25 µM) and HeLa cells (IC50 = 17.52 ± 0.09 and 24.14 ± 0.86 µM) and low toxicity against the HFL-1 (IC50 = 114.50 ± 0.01 and 173.20 ± 10 µM). The flow cytometry was further used to confirm the anticancer activity of potent derivatives against the A549 cancer cell line. DNA binding interaction of anticancer agents 3a and 3h with Ct-DNA has been carried out by absorption, fluorescence, EtBr (dye displacement assay), circular dichroism, cyclic voltammetry and time-resolved fluorescence, which showed noncovalent binding mode of interaction. Anticancer activity of both lead compounds (3a and 3h) may be attributed to DNA binding. The evaluation of the antioxidant potential of pyrazoline analogs 3a and 3h by 2,2-diphenyl-1-picrylhydrazyl free radical showed promising antioxidant activity with IC50 values of 0.132 ± 0.012 and 0.215 ± 0.025 µg/mL, respectively. In silico molecular docking of pyrazoline derivatives was also performed using autodock vina software against the DNA hexamer with PDB ID: 1Z3F and ADMET properties to explore their best hits.

4.
Bioorg Chem ; 108: 104665, 2021 03.
Article in English | MEDLINE | ID: mdl-33571809

ABSTRACT

N-formyl pyrazoline derivatives (3a-3l) were designed and synthesized via Michael addition reaction through cyclization of chalcones with hydrazine hydrate in presence of formic acid. The structural elucidation of N-formyl pyrazoline derivatives was carried out by various spectroscopic techniques such as 1H, 13C NMR, FT-IR, UV-visible spectroscopy, mass spectrometry and elemental analysis. Anticancer activity of the pyrazoline derivatives (3a-3l) was evaluated against human lung cancer (A549), fibrosarcoma cell lines (HT1080) and human primary normal lung cells (HFL-1) by MTT assay. The results of anticancer activity showed that potent analogs 3b and 3d exhibited promising activity against A549 (IC50 = 12.47 ± 1.08 and 14.46 ± 2.76 µM) and HT1080 (IC50 = 11.40 ± 0.66 and 23.74 ± 13.30 µM) but low toxic against the HFL-1 (IC50 = 116.47 ± 43.38 and 152.36 ± 22.18 µM). The anticancer activity of potent derivatives (3b and 3d) against A549 cancer cell line was further confirmed by flow cytometry based approach. DNA binding interactions of the pyrazoline derivatives 3b and 3d have been carried out with calf thymus DNA (Ct-DNA) using absorption, fluorescence and viscosity measurements, circular dichroism and cyclic voltammetry. Antioxidant potential of N-formyl pyrazoline derivatives (3a-3l) has been also estimated through DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical and H2O2. Results revealed that all the compounds exhibited significant antioxidant activity. In silico molecular modelling and ADMET properties of pyrazoline derivatives were also studied using PyRx software against topoisomerase II receptor with PDB ID: 1ZXM to explore their best hits. MD simulation of 3b and 3d was also carried out with topoisomerase II for structure-function correlation in a protein. HuTopoII inhibitory activity of the analogs (3a-3l) was examined by relaxation assay at varying concentrations 100-1000 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , DNA/chemistry , Pyrazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Binding Sites , Biphenyl Compounds/antagonists & inhibitors , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Picrates/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...