Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 88: 102872, 2023 08.
Article in English | MEDLINE | ID: mdl-37384951

ABSTRACT

Deep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data. Since conditional models are trained with knowledge of the imaging operator, they can show poor generalization across variable operators. Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator. Recent diffusion models are particularly promising given their high sample fidelity. Nevertheless, inference with a static image prior can perform suboptimally. Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts. AdaDiff leverages an efficient diffusion prior trained via adversarial mapping over large reverse diffusion steps. A two-phase reconstruction is executed following training: a rapid-diffusion phase that produces an initial reconstruction with the trained prior, and an adaptation phase that further refines the result by updating the prior to minimize data-consistency loss. Demonstrations on multi-contrast brain MRI clearly indicate that AdaDiff outperforms competing conditional and unconditional methods under domain shifts, and achieves superior or on par within-domain performance.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Magnetic Resonance Imaging/methods , Neuroimaging , Learning , Brain/diagnostic imaging
2.
Med Image Anal ; 70: 101944, 2021 05.
Article in English | MEDLINE | ID: mdl-33690024

ABSTRACT

Multi-contrast MRI protocols increase the level of morphological information available for diagnosis. Yet, the number and quality of contrasts are limited in practice by various factors including scan time and patient motion. Synthesis of missing or corrupted contrasts from other high-quality ones can alleviate this limitation. When a single target contrast is of interest, common approaches for multi-contrast MRI involve either one-to-one or many-to-one synthesis methods depending on their input. One-to-one methods take as input a single source contrast, and they learn a latent representation sensitive to unique features of the source. Meanwhile, many-to-one methods receive multiple distinct sources, and they learn a shared latent representation more sensitive to common features across sources. For enhanced image synthesis, we propose a multi-stream approach that aggregates information across multiple source images via a mixture of multiple one-to-one streams and a joint many-to-one stream. The complementary feature maps generated in the one-to-one streams and the shared feature maps generated in the many-to-one stream are combined with a fusion block. The location of the fusion block is adaptively modified to maximize task-specific performance. Quantitative and radiological assessments on T1,- T2-, PD-weighted, and FLAIR images clearly demonstrate the superior performance of the proposed method compared to previous state-of-the-art one-to-one and many-to-one methods.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans
3.
IEEE Trans Med Imaging ; 38(10): 2375-2388, 2019 10.
Article in English | MEDLINE | ID: mdl-30835216

ABSTRACT

Acquiring images of the same anatomy with multiple different contrasts increases the diversity of diagnostic information available in an MR exam. Yet, the scan time limitations may prohibit the acquisition of certain contrasts, and some contrasts may be corrupted by noise and artifacts. In such cases, the ability to synthesize unacquired or corrupted contrasts can improve diagnostic utility. For multi-contrast synthesis, the current methods learn a nonlinear intensity transformation between the source and target images, either via nonlinear regression or deterministic neural networks. These methods can, in turn, suffer from the loss of structural details in synthesized images. Here, in this paper, we propose a new approach for multi-contrast MRI synthesis based on conditional generative adversarial networks. The proposed approach preserves intermediate-to-high frequency details via an adversarial loss, and it offers enhanced synthesis performance via pixel-wise and perceptual losses for registered multi-contrast images and a cycle-consistency loss for unregistered images. Information from neighboring cross-sections are utilized to further improve synthesis quality. Demonstrations on T1- and T2- weighted images from healthy subjects and patients clearly indicate the superior performance of the proposed approach compared to the previous state-of-the-art methods. Our synthesis approach can help improve the quality and versatility of the multi-contrast MRI exams without the need for prolonged or repeated examinations.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...