Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 59(2): 191-205, 2002.
Article in English | MEDLINE | ID: mdl-11900206

ABSTRACT

Soil samples were collected around a coal-fired power plant from 81 different locations. Brown coal, unusually rich in uranium, is burnt in this plant that lies inside the confines of a small industrial town and has been operational since 1943. Activity concentrations of the radionuclides 238U, 226Ra, 232Th, 137Cs and 40K were determined in the samples. Considerably elevated concentrations of 238U and 226Ra have been found in most samples collected within the inhabited area. Concentrations of 235U and 226Ra in soil decreased regularly with increasing depth at many locations, which can be explained by fly-ash fallout. Concentrations of 235U and 226Ra in the top (0-5 cm depth) layer of soil in public areas inside the town are 4.7 times higher, on average, than those in the uncontaminated deeper layers, which means there is about 108 Bq kg(-1) surplus activity concentration above the geological background. A high emanation rate of 222Rn from the contaminated soil layers and significant disequilibrium between 238U and 226Ra activities in some kinds of samples have been found.


Subject(s)
Coal , Power Plants , Soil Pollutants, Radioactive/analysis , Environmental Monitoring , Radioactive Fallout/analysis
2.
Health Phys ; 73(6): 944-52, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9373073

ABSTRACT

59 hot particles were collected in Kiev, Ukraine, in 1987. All but one were prepared from a moss carpet of 360 cm2 area. Radionuclide composition of the hot particles was investigated by gamma-spectrometry and beta absorption method. Pure beta emitters 90Sr and 147Pm were determined in 25 hot particles measuring the beta absorption curves of the hot particles with an end-window Geiger-Müller counter and decomposing the curves in order to obtain the contributions of 90Sr and 147Pm to the total beta counting rate. All but one of the hot particles were found to be the debris of the fuel. The activity ratio 90Sr:l44Ce was 0.052 in good agreement with theoretical calculations on core inventories. This means that strontium behaved as a nonvolatile element in the process of the formation of the hot particles investigated. The activity ratio 147Pm:144Ce was 0.078 which is half of the theoretical result. Although 147Pm is considered to be a refractory nuclide, it seems that significant part of 147Pm went to the homogeneous fraction of the general fallout. The surface density of hot particles (of higher than about 50 Bq activity) was about 1,600 m(-2) and that of the activities of the nuclides 90Sr, 106Ru, 134Cs, 137Cs, 144Ce and 147Pm as components of hot particles was 12.2, 54.3, 5.9, 9.7, 234 and 18.3 kBq m(-2) (activity values counted for 26 April 1986), respectively, in downtown Kiev city in 1987.


Subject(s)
Beta Particles , Gamma Rays , Promethium/analysis , Radiation Monitoring/methods , Radioactive Fallout/analysis , Radioactive Hazard Release , Strontium Radioisotopes/analysis , Cerium Radioisotopes/analysis , Cesium Radioisotopes/analysis , Radiation Monitoring/instrumentation , Ruthenium Radioisotopes/analysis , Scintillation Counting , Ukraine , Urban Health
3.
Health Phys ; 72(4): 601-10, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9119685

ABSTRACT

A new grab sampling method has been developed for the simultaneous measurement of radon decay products and thoron decay products in air. It is based on direct beta counting of filtered aerosol sample over successive time intervals by end-window Geiger-Muller counter. Defined solid angle absolute counting was used to evaluate the efficiencies for the decay products one by one. Absolute activity concentrations can be determined with less than 10% systematic error. Glass-fiber filter, high sampling flow rate, and long duration of sampling can be used, as a result of which the detection limits are about 0.1, 0.2, and 0.01 Bq m(-3) for 214Pb, 214Bi, and 212Pb, respectively. Indoor saturated activity concentrations were measured in 86 buildings in Ajka town, Hungary, where industrial wastes rich in uranium had been used as building materials. Elevated radon decay product levels were found in houses built before 1960. Radon gas concentration was also measured simultaneously in 26 cases and the minimum, maximum, and average values of the equilibrium factor were 0.17, 0.73, and 0.40, respectively.


Subject(s)
Air Pollutants, Radioactive/analysis , Radiometry/instrumentation , Radon/analysis , Air Pollution, Indoor/analysis , Bismuth/analysis , Evaluation Studies as Topic , Housing , Humans , Hungary , Lead Radioisotopes/analysis , Radioisotopes/analysis , Radiometry/statistics & numerical data , Radon Daughters/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...