Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 353: 120209, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38295633

ABSTRACT

Wildfires have a significant impact on ecosystems worldwide, especially on the degradation of arid and semi-arid rangelands. This research focuses on assessing the effects of wildfires on the habitat of Trigonella elliptica, a valuable herb species found in the central rangelands of Iran. To achieve this, the Random Forest (RF) algorithm has been deployed to predict T. elliptica habitat and fire hazard using socio-environmental variables in Yazd province, Iran. 225 fire points and 103 habitat locations were used for model training and testing. The IncNodePurity index and Probability Curves (PC) have been utilized to determine the influence of socio-environmental variables. The combination of the prediction maps of the habitat and wildfires pointed out the possible damage due to fire. The high performance of the RF model is confirmed by the area under the curve (AUC) and the true skill statistic (TSS) values (0.90 and 0.81 for the habitat; 0.92 and 0.82 for the wildfire). The importance assessment of variables revealed that elevation, slope, and precipitation are the most influential variables in the distribution of T. elliptica, while distance to roads, population density, and wind speed are the key factors affecting wildfire occurrence. In the final map, a comparison of different regions of T. elliptica habitat under fire hazard with fire-free habitats using Kruskal-Wallis and Dunn tests indicated that the fire hazard in the T. elliptica habitat is a serious concern. Since the areas with the highest fire hazard and the highest presence of T. elliptica cover approximately 2311.38 km2, neglecting these regions could lead to the gradual reduction of T. elliptica, and create conditions for secondary succession dominated by less valuable annual species. The findings of this study underscore the importance of implementing fire management strategies, protection projects, and continuous monitoring to ensure the safety and conservation of the T. elliptica habitat.


Subject(s)
Coleoptera , Trigonella , Wildfires , Animals , Ecosystem , Random Forest , Probability
2.
Sci Total Environ ; 797: 149034, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34303243

ABSTRACT

Lake water level fluctuation is a function of hydro-meteorological components, namely input, and output to the system. The combination of these components from in-situ and remote sensing sources has been used in this study to define multiple scenarios, which are the major explanatory pathways to assess lake water levels. The goal is to analyze each scenario through the application of the water balance equation to simulate lake water levels. The largest lake in Iran, Lake Urmia, has been selected in this study as it needs a great deal of attention in terms of water management issues. We ran a monthly water balance simulation of nineteen scenarios for Lake Urmia from 2003 to 2007 by applying different combinations of data, including observed and remotely sensed water level, flow, evaporation, and rainfall. We used readily available water level data from Hydrosat, Hydroweb, and DAHITI platforms; evapotranspiration from MODIS and rainfall from TRMM. The analysis suggests that the consideration of field data in the algorithm as the initial water level can reproduce the fluctuation of Lake Urmia water level in the best way. The scenario that combines in-situ meteorological components is the closest match to the observed water level of Lake Urmia. Almost all scenarios showed good dynamics with the field water level, but we found that nine out of nineteen scenarios did not vary significantly in terms of dynamics. The results also reveal that, even without any field data, the proposed scenario, which consists entirely of remote sensing components, is capable of estimating water level fluctuation in a lake. The analysis also explains the necessity of using proper data sources to act on water regulations and managerial decisions to understand the temporal phenomenon not only for Lake Urmia but also for other lakes in semi-arid regions.


Subject(s)
Environmental Monitoring , Lakes , Desert Climate , Iran , Water
3.
Sci Rep ; 10(1): 12937, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737384

ABSTRACT

Floods in urban environments often result in loss of life and destruction of property, with many negative socio-economic effects. However, the application of most flood prediction models still remains challenging due to data scarcity. This creates a need to develop novel hybridized models based on historical urban flood events, using, e.g., metaheuristic optimization algorithms and wavelet analysis. The hybridized models examined in this study (Wavelet-SVR-Bat and Wavelet-SVR-GWO), designed as intelligent systems, consist of a support vector regression (SVR), integrated with a combination of wavelet transform and metaheuristic optimization algorithms, including the grey wolf optimizer (GWO), and the bat optimizer (Bat). The efficiency of the novel hybridized and standalone SVR models for spatial modeling of urban flood inundation was evaluated using different cutoff-dependent and cutoff-independent evaluation criteria, including area under the receiver operating characteristic curve (AUC), Accuracy (A), Matthews Correlation Coefficient (MCC), Misclassification Rate (MR), and F-score. The results demonstrated that both hybridized models had very high performance (Wavelet-SVR-GWO: AUC = 0.981, A = 0.92, MCC = 0.86, MR = 0.07; Wavelet-SVR-Bat: AUC = 0.972, A = 0.88, MCC = 0.76, MR = 0.11) compared with the standalone SVR (AUC = 0.917, A = 0.85, MCC = 0.7, MR = 0.15). Therefore, these hybridized models are a promising, cost-effective method for spatial modeling of urban flood susceptibility and for providing in-depth insights to guide flood preparedness and emergency response services.

4.
Sci Total Environ ; 719: 137336, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32135318

ABSTRACT

Assessment and monitoring of river morphology own an important role in river engineering; since, changes in river morphology including erosion and sedimentation affect river cross-sections and flow processes. An approach for River Morphodynamics Analysis based on Remote Sensing (RiMARS) was developed and tested on the case of Mollasadra dam construction on the Kor River, Iran. Landsat multispectral images obtained from the open USGS dataset are used to extract river morphology dynamics by the Modified Normalized Difference Water Index (MNDWI). RiMARS comes with a river extraction module which is independent of threshold segmentation methods to produce binary-level images. In addition, RiMARS is equipped with developed indices for assessing the morphological alterations. Five characteristics of river morphology (spatiotemporal Sinuosity Index (SI), Absolute Centerline Migration (ACM), Rate of Centerline Migration (RCM), River Linear Pattern (RLP), and Meander Migration Index (MMI)), are applied to quantify river morphology changes. The results indicated that the Kor River centerline underwent average annual migration of 40 cm to the southwest during 1993-2003 (pre-construction impact), 20 cm to the northeast during 2003-2011, and 40 cm to the south-west during 2011-2017 (post-construction impact). Spatially, as the Kor River runs towards the Doroudzan dam, changes in river morphology have increased from upstream to downstream; particularly evident where the river flows in a plain instead of the valley. Based on SI values, there was a 5% change in the straight sinuosity class in the pre-construction period, but an 18% decrease in the straight class during the post-construction period. Here we demonstrate the application of RiMARS in assessing the impact of dam construction on morphometric processes in Kor River, but it can be used to assess other riverine changes, including tracking the unauthorized water consumption using diverted canals. RiMARS can be applied on multispectral images.

5.
Sci Total Environ ; 711: 135161, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31818576

ABSTRACT

Flash-floods are increasingly recognized as a frequent natural hazard worldwide. Iran has been among the mostdevastated regions affected by the major floods. While the temporal flash-flood forecasting models are mainly developed for warning systems, the models for assessing hazardous areas can greatly contribute to adaptation and mitigation policy-making and disaster risk reduction. Former researches in the flash-flood hazard mapping have heightened the urge for the advancement of more accurate models. Thus, the current research proposes the state-of-the-art ensemble models of boosted generalized linear model (GLMBoost) and random forest (RF), and Bayesian generalized linear model (BayesGLM) methods for higher performance modeling. Furthermore, a pre-processing method, namely simulated annealing (SA), is used to eliminate redundant variables from the modeling process. Results of the modeling based on the hit and miss analysis indicates high performance for both models (accuracy = 90-92%, Kappa = 79-84%, Success ratio = 94-96%, Threat score = 80-84%, and Heidke skill score = 79-84%). The variables of distance from the stream, vegetation, drainage density, land use, and elevation have shown more contribution among others for modeling the flash-flood. The results of this study can significantly facilitate mapping the hazardous areas and further assist watershed managers to control and remediate induced damages of flood in the data-scarce regions.

6.
Sci Total Environ ; 675: 429-438, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31030149

ABSTRACT

Managed aquifer recharge (MAR) structure is widely used to expand groundwater resources. In arid regions with flash flooding, MAR can also be used as a flood control structure to decrease peak discharge of rivers. In this paper, we present a method for quantifying the role of MAR in head water systems and assess its impact on the total water balance in a river basin. The method is based on rainfall-runoff modeling, reservoir flood routing, recharge analysis and river flow analysis. For the case selected, Kamal Abad MAR in Lake Maharlou basin in southern Iran, we analyzed changes in the downstream river regime using two scenarios (with MAR and without MAR) with different return periods. The results revealed a significant impact of MAR on river flow in terms of changes in flow timing, magnitude and variability. With MAR, the ephemeral river studied became disconnected from the main stream, albeit, whereas the case without MAR, floods with return period higher than 10 years would be connected to the downstream. Even though, MAR structures are useful in arid and semi-arid climates for irrigation water supply, their placing and designing need more attention. The developed method can be used to assess the impacts of MAR on river flow and find the best location for it to make the connection of the ephemeral river and downstream river, an issue which has not received much attention in hydrological research.

7.
Sci Total Environ ; 615: 272-281, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28982076

ABSTRACT

Suspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data. We also compared the accuracy of the CART model with that of the four most commonly used models for time series modelling of SSL, i.e. adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP) neural network and two kernels of support vector machines (RBF-SVM and P-SVM). The models were calibrated using river discharge, stage, rainfall and monthly SSL data for the Kareh-Sang River gauging station in the Haraz watershed in northern Iran, where sediment transport is a considerable issue. In addition, different combinations of input data with various time lags were explored to estimate SSL. The best input combination was identified through trial and error, percent bias (PBIAS), Taylor diagrams and violin plots for each model. For evaluating the capability of the models, different statistics such as Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and percent bias (PBIAS) were used. The results showed that the CART model performed best in predicting SSL (NSE=0.77, KGE=0.8, PBIAS<±15), followed by RBF-SVM (NSE=0.68, KGE=0.72, PBIAS<±15). Thus the CART model can be a helpful tool in basins where hydro-meteorological data are readily available.

SELECTION OF CITATIONS
SEARCH DETAIL
...