Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(7): 1932-1944, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38545294

ABSTRACT

Inexpensive, stable, selective, and recyclable nanocatalysts, waste regeneration, and utilization of safe and available solvents are of interest and important factors in laboratory science and industrial applications of green chemistry. Therefore, herein, biochar nanoparticles (BNPs) were synthesized through chicken manure pyrolysis as a novel method for waste recycling. Then, in order to improve their recyclability, the obtained BNPs were magnetized using magnetic nickel nanoparticles. Then, the surface of the biochar magnetic nanoparticles (BMNPs) was modified by (3-chloropropyl)trimethoxysilane (3-CPTMS) and further a novel neodymium Schiff-base complex was immobilized on the surface of the modified BMNPs, denoted as Nd-Schiff-base@BMNPs. The obtained supported neodymium complex was used as a practical, selective, biocompatible, commercial, and reusable heterogeneous nanocatalyst. The biochar support of this nanocatalyst was formed from pyrolysis of chicken manure; therefore, it is cheap, economically viable, green and also compatible with the principles of green chemistry. Nd-Schiff-base@BMNPs acts selectively in organic reactions and also it can easily be recovered using an external magnet and reused, which is compatible with the principles of green chemistry. This nanocatalyst was characterized by wavelength-dispersive X-ray spectroscopy (WDX), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), and N2 adsorption-desorption (BET method) techniques. In the next step, the catalytic utilization of Nd-Schiff-base@BMNPs was investigated in the homoselective synthesis of 5-substituted 1H-tetrazole compounds from [3 + 2] cycloaddition of sodium azide (NaN3) and organo-nitriles in PEG-400 as a green solvent. Utilizing PEG-400 as a solvent offers various advantages, e.g. cheap, readily available, and environmentally friendly solvent as well as rapid separation and high purity of products. Therefore, this work is fully compatible with the principles of green chemistry.

2.
RSC Adv ; 13(18): 12572-12588, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37101952

ABSTRACT

In this paper, KIT-6@SMTU@Ni was successfully synthesized via a new method of Ni(ii) complex stabilization on modified mesoporous KIT-6, as a novel and green heterogeneous catalyst. The obtained catalyst (KIT-6@SMTU@Ni) was characterized using Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) calculation, X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDS), X-ray mapping, thermogravimetric analysis (TGA) techniques and scanning electron microscopy (SEM). After complete characterization of the catalyst, it was successfully used for the synthesis of 5-substituted 1H-tetrazoles and pyranopyrazoles. Moreover, tetrazoles were synthesized from benzonitrile derivatives and sodium azide (NaN3). All tetrazole products were synthesized with high TON, TOF and excellent yields (88-98%) in a reasonable time (0.13-8 h), demonstrating the efficiency and practicality of the KIT-6@SMTU@Ni catalyst. Furthermore, pyranopyrazoles were prepared through the condensation reaction of benzaldehyde derivatives with malononitrile, hydrazine hydrate and ethyl acetoacetate with high TON, TOF and excellent yields (87-98%) at appropriate times (2-10.5 h). KIT-6@SMTU@Ni could be reused for five runs without any re-activation. Significantly, this plotted protocol has prominent benefits, such as applying green solvents, the use of commercially available and low-cost materials, excellent separation and reusability of the catalyst, short reaction time, high yield of products and a facile work-up.

SELECTION OF CITATIONS
SEARCH DETAIL
...