Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 84(2): 022701, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464183

ABSTRACT

SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.


Subject(s)
Electrons , Light , Particle Accelerators/instrumentation , Terahertz Radiation , Terahertz Spectroscopy
2.
Phys Rev Lett ; 108(8): 087601, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463572

ABSTRACT

We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond time scales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

3.
Molecules ; 15(1): 554-69, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20110909

ABSTRACT

Three new enantiopure aryl-thioureas have been synthesized, N-(4-X-phenyl)-N-[1(S)-1-phenylethyl]thiourea, X= Cl, Br, and NO2 (compounds 1-3, respectively). Large single crystals of up to 0.5 cm(3) were grown from methanol/ethanol solutions. Molecular structures were derived from X-ray diffraction studies and the crystal morphology was compared to calculations employing the Bravais-Friedel, Donnay-Harker model. Molecular packing was further studied with Hirshfeld surface calculations. Semi-empirical classical model calculations of refractive indices, optical rotation and the electro-optic effect were performed with OPTACT on the basis of experimentally determined refractive indices. Compound 3 (space group P 1 (No. 1)) was estimated to possess a large electro-optic coefficient r(333) of approximately 30 pm/V, whereas 1 and 2 (space Group P 2(1) (No. 4) exhibit much smaller effects.


Subject(s)
Bromine/chemistry , Chlorine/chemistry , Nitrogen Dioxide/chemistry , Optical Phenomena , Thiourea/chemistry , Crystallography, X-Ray , Electrons , Hydrogen Bonding , Models, Molecular , Refractometry , Rotation , Thioamides/chemistry , Thiourea/chemical synthesis
4.
Nat Nanotechnol ; 4(11): 773-80, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19893526

ABSTRACT

The near-infrared photoluminescence intrinsic to semiconducting single-walled carbon nanotubes is ideal for biological imaging owing to the low autofluorescence and deep tissue penetration in the near-infrared region beyond 1 microm. However, biocompatible single-walled carbon nanotubes with high quantum yield have been elusive. Here, we show that sonicating single-walled carbon nanotubes with sodium cholate, followed by surfactant exchange to form phospholipid-polyethylene glycol coated nanotubes, produces in vivo imaging agents that are both bright and biocompatible. The exchange procedure is better than directly sonicating the tubes with the phospholipid-polyethylene glycol, because it results in less damage to the nanotubes and improves the quantum yield. We show whole-animal in vivo imaging using an InGaAs camera in the 1-1.7 microm spectral range by detecting the intrinsic near-infrared photoluminescence of the 'exchange' single-walled carbon nanotubes at a low dose (17 mg l(-1) injected dose). The deep tissue penetration and low autofluorescence background allowed high-resolution intravital microscopy imaging of tumour vessels beneath thick skin.


Subject(s)
Imaging, Three-Dimensional/methods , Molecular Imaging/methods , Nanotubes, Carbon/chemistry , Spectroscopy, Near-Infrared , Animals , Blood Vessels/pathology , Cell Line, Tumor , Fluorescence , Humans , Luminescent Measurements , Mice , Microscopy, Atomic Force , Spectrum Analysis, Raman
5.
Phys Chem Chem Phys ; 11(20): 3951-7, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19440624

ABSTRACT

We report time-resolved studies of hydrogen bonding in liquid H(2)O, in response to direct excitation of the O-H stretch mode at 3 mum, probed via soft X-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft X-ray spectroscopy in the liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10 K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8 MPa, is manifested by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.


Subject(s)
Vibration , Water/chemistry , Absorption , Hydrogen Bonding , Pressure , Spectrum Analysis, Raman , Temperature , Time Factors , X-Rays
6.
Nat Biotechnol ; 26(11): 1285-92, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18953353

ABSTRACT

The current sensitivity of standard fluorescence-based protein detection limits the use of protein arrays in research and clinical diagnosis. Here, we use functionalized, macromolecular single-walled carbon nanotubes (SWNTs) as multicolor Raman labels for highly sensitive, multiplexed protein detection in an arrayed format. Unlike fluorescence methods, Raman detection benefits from the sharp scattering peaks of SWNTs with minimal background interference, affording a high signal-to-noise ratio needed for ultra-sensitive detection. When combined with surface-enhanced Raman scattering substrates, the strong Raman intensity of SWNT tags affords protein detection sensitivity in sandwich assays down to 1 fM--a three-order-of-magnitude improvement over most reports of fluorescence-based detection. We use SWNT Raman tags to detect human autoantibodies against proteinase 3, a biomarker for the autoimmune disease Wegener's granulomatosis, diluted up to 10(7)-fold in 1% human serum. SWNT Raman tags are not subject to photobleaching or quenching. By conjugating different antibodies to pure (12)C and (13)C SWNT isotopes, we demonstrate multiplexed two-color SWNT Raman-based protein detection.


Subject(s)
Autoantibodies/blood , Granulomatosis with Polyangiitis/diagnosis , Nanotubes, Carbon/chemistry , Protein Array Analysis/methods , Spectrum Analysis, Raman/methods , Animals , Carbon Isotopes/chemistry , Carbon Radioisotopes/chemistry , Granulomatosis with Polyangiitis/immunology , Humans , Mice , Myeloblastin/immunology
7.
J Am Chem Soc ; 130(20): 6551-5, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18426207

ABSTRACT

Single-walled carbon nanotubes (SWNTs) are typically long (greater than or approximately equal 100 nm) and have been well established as novel quasi one-dimensional systems with interesting electrical, mechanical, and optical properties. Here, quasi zero-dimensional SWNTs with finite lengths down to the molecular scale (7.5 nm in average) were obtained by length separation using a density gradient ultracentrifugation method. Different sedimentation rates of nanotubes with different lengths in a density gradient were taken advantage of to sort SWNTs according to length. Optical experiments on the SWNT fractions revealed that the UV-vis-NIR absorption and photoluminescence peaks of the ultrashort SWNTs blue-shift up to approximately 30 meV compared to long nanotubes, owing to quantum confinement effects along the length of ultrashort SWNTs. These nanotube capsules essentially correspond to SWNT quantum dots.

8.
Nano Lett ; 8(2): 586-90, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18197719

ABSTRACT

Fluorescent molecules emitting in the near-infrared (NIR, wavelength approximately 0.8-2 microm) are relatively scarce and have been actively sought for biological applications because cells and tissues exhibit little auto-fluorescence in this region. Here, we report the use of semiconducting single-walled carbon nanotubes (SWNTs) as near-infrared fluorescent tags for selective probing of cell surface receptors and cell imaging. Biologically inert SWNTs with polyethyleneglycol functionalization are conjugated to antibodies such as Rituxan to selectively recognize CD20 cell surface receptor on B-cells with little nonspecific binding to negative T-cells and Herceptin to recognize HER2/neu positive breast cancer cells. We image selective SWNT-antibody binding to cells by detecting the intrinsic NIR photoluminescence of nanotubes. We observe ultralow NIR autofluorescence for various cells, an advantageous feature over high autofluorescence and large variations between cells lines in the visible. This establishes SWNTs as novel NIR fluorophors for sensitive and selective biological detections and imaging in vitro and potentially in vivo. Further, our results clearly show that the interactions between carbon nanotubes and living cells are strongly dependent on surface functionalization of nanotubes.


Subject(s)
Image Enhancement/methods , Lymphoma/pathology , Microscopy, Fluorescence/methods , Molecular Probe Techniques , Nanotechnology/methods , Nanotubes, Carbon/analysis , Spectrophotometry, Infrared/methods , Cell Line, Tumor , Contrast Media/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...