Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(1)2024 01 13.
Article in English | MEDLINE | ID: mdl-38257815

ABSTRACT

The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous studies have indicated that for some strains of Wolbachia, perturbations in lipid metabolism and cholesterol storage are vital in Wolbachia-mediated antiviral activity against the flaviviruses dengue and Zika; however, it has not yet been examined whether arboviruses in the alphavirus group are affected in the same way. Here, using the reporters for the alphavirus Semliki Forest virus (SFV) in Aedes albopictus cells, we found that Wolbachia strains wMel, wAu and wAlbB blocked viral replication/translation early in infection and that storage of cholesterol in lipid droplets is not key to this inhibition. Another alphavirus, o'nyong nyong virus (ONNV), was tested in both Aedes albopictus cells and in vivo in stable, transinfected Aedes aegypti mosquito lines. The strains wMel, wAu and wAlbB show strong antiviral activity against ONNV both in vitro and in vivo. Again, 2-hydroxypropyl-ß-cyclodextrin (2HPCD) was not able to rescue ONNV replication in cell lines, suggesting that the release of stored cholesterol caused by wMel is not able to rescue blockage of ONNV. Taken together, this study shows that alphaviruses appear to be inhibited early in replication/translation and that there may be differences in how alphaviruses are inhibited by Wolbachia in comparison to flaviviruses.


Subject(s)
Aedes , Alphavirus , Flavivirus , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Cholesterol , Antiviral Agents/pharmacology
2.
PLoS Pathog ; 19(12): e1011688, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38153929

ABSTRACT

Deep sequencing of wastewater to detect SARS-CoV-2 has been used during the COVID-19 pandemic to monitor viral variants as they appear and circulate in communities. SARS-CoV-2 lineages of an unknown source that have not been detected in clinical samples, referred to as cryptic lineages, are sometimes repeatedly detected from specific locations. We have continued to detect one such lineage previously seen in a Missouri site. This cryptic lineage has continued to evolve, indicating continued selective pressure similar to that observed in Omicron lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Missouri/epidemiology , Pandemics
3.
Insects ; 14(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37504607

ABSTRACT

La Crosse virus (LACV) is circulating in the midwestern and southeastern states of the United States and can cause human encephalitis. The main vector of the virus is the eastern tree-hole mosquito, Aedes triseriatus. Ae. albopictus has been also described as a natural LACV vector, while Ae. aegypti has been infected with the virus under laboratory conditions. Here, we compare the vertical transmission potential of LACV in Ae. albopictus and Ae. aegypti, with emphasis given to the ovarian infection patterns that the virus generates in both species. Both mosquito species received artificial bloodmeals containing LACV. At defined time points post-infection/bloodmeal, midguts, head tissue, and ovaries were analyzed for the presence of virus. Viral infection patterns in the ovaries were visualized via immunofluorescence confocal microscopy and immunohistopathology assays using an LACV-specific monoclonal antibody. In Ae. aegypti, LACV was confronted with midgut infection and escape barriers, which were much less pronounced in Ae. albopictus, resulting in a significantly higher prevalence of infection in the latter. Following the ingestion of a single virus-containing bloodmeal, no progeny larvae were found to be virus-infected. Regardless, females of both species showed the presence of LACV antigen in their ovariole sheaths. Furthermore, in a single Ae. albopictus female, viral antigen was associated with the nurse cells inside the primary follicles. Following the ingestion of a second non-infectious bloodmeal at 7- or 10-days post-ingestion of an LACV-containing bloodmeal, more progeny larvae of Ae. albopictus than of Ae. aegypti were virus-infected. LACV antigen was detected in the egg chambers and ovariole sheaths of both mosquito species. Traces of viral antigen were also detected in a few oocytes from Ae. albopictus. The low level of vertical transmission and the majority of the ovarian infection patterns suggested the transovum rather than transovarial transmission (TOT) of the virus in both vector species. However, based on the detection of LACV antigen in follicular tissue and oocytes, there was the potential for TOT among several Ae. albopictus females. Thus, TOT is not a general feature of LACV infection in mosquitoes. Instead, the TOT of LACV seems to be dependent on its particular interaction with the reproductive tissues of a female.

SELECTION OF CITATIONS
SEARCH DETAIL
...