Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2484: 85-92, 2022.
Article in English | MEDLINE | ID: mdl-35461446

ABSTRACT

Chromatin organization influences gene and transposon expression, and regulates various cellular processes. Higher order chromatin structure has been widely studied using genomic approaches and microscopy image analyses. Chromosome conformation capture and sequencing the junction of DNA fragments enables the study of both chromatin interaction and chromosome folding. However, certain cell types are embedded in other cell types which complicate the process of studying them using high-throughput genomic approaches. To overcome this limitation, high-resolution microscopy techniques are now available to investigate chromatin organization in single cells. In this chapter, we provide a detailed protocol to prepare chromosome spreading from tomato nuclei, to label genomic loci by fluorescence in situ hybridization, and to visualize these locations at high resolution with Structured Illumination microscopy.


Subject(s)
Chromatin , Solanum lycopersicum , Chromatin/genetics , Chromosomes , In Situ Hybridization, Fluorescence/methods , Lighting , Solanum lycopersicum/genetics , Microscopy
2.
J Cell Biol ; 217(12): 4070-4079, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30266762

ABSTRACT

During the zygotene stage of meiosis, normal progression of chromosome synapsis and homologous recombination frequently lead to the formation of structural interlocks between entangled chromosomes. The persistence of interlocks through to the first meiotic division can jeopardize normal synapsis and occasionally chromosome segregation. However, they are generally removed by pachytene. It has been postulated that interlock removal requires one or more active processes, possibly involving topoisomerase II (TOPII) and/or chromosome movement. However, experimental evidence has been lacking. Analysis of a hypomorphic topII mutant and a meiosis-specific topII RNAi knockdown of Arabidopsis thaliana using immunocytochemistry and structured illumination microscopy (SIM) has now enabled us to demonstrate a role for TOPII in interlock resolution. Furthermore, analysis using a nucleoporin nup136 mutant, which affects chromosome movement, reveals that although TOPII activity is required for the removal of some interlock structures, for others, chromosome movement is also necessary. Thus, our study demonstrates that at least two mechanisms are required to ensure interlock removal.


Subject(s)
Arabidopsis/enzymology , Chromosomes, Plant/metabolism , DNA Topoisomerases, Type II/metabolism , Meiosis/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomes, Plant/genetics , DNA Topoisomerases, Type II/genetics , Mutation , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
3.
Plant Physiol ; 178(1): 233-246, 2018 09.
Article in English | MEDLINE | ID: mdl-30002256

ABSTRACT

During the leptotene stage of prophase I of meiosis, chromatids become organized into a linear looped array via a protein axis that forms along the loop bases. Establishment of the axis is essential for the subsequent synapsis of the homologous chromosome pairs and the progression of recombination to form genetic crossovers. Here, we describe ASYNAPTIC4 (ASY4), a meiotic axis protein in Arabidopsis (Arabidopsis thaliana). ASY4 is a small coiled-coil protein that exhibits limited sequence similarity with the carboxyl-terminal region of the axis protein ASY3. We used enhanced yellow fluorescent protein-tagged ASY4 to show that ASY4 localizes to the chromosome axis throughout prophase I. Bimolecular fluorescence complementation revealed that ASY4 interacts with ASY1 and ASY3, and yeast two-hybrid analysis confirmed a direct interaction between ASY4 and ASY3. Mutants lacking full-length ASY4 exhibited defective axis formation and were unable to complete synapsis. Although the initiation of recombination appeared to be unaffected in the asy4 mutant, the number of crossovers was reduced significantly, and crossovers tended to group in the distal parts of the chromosomes. We conclude that ASY4 is required for normal axis and crossover formation. Furthermore, our data suggest that ASY3/ASY4 are the functional homologs of the mammalian SYCP2/SYCP3 axial components.


Subject(s)
Arabidopsis Proteins/genetics , Chromosomes, Plant/genetics , Ligases/genetics , Meiosis/genetics , Synaptonemal Complex/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Chromosome Pairing/genetics , Crossing Over, Genetic/genetics , Ligases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Meiotic Prophase I/genetics , Mutation , Plants, Genetically Modified , Protein Binding , Synaptonemal Complex/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...