Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 40(49): 9401-9413, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33127852

ABSTRACT

During cochlear development, the Notch ligand JAGGED 1 (JAG1) plays an important role in the specification of the prosensory region, which gives rise to sound-sensing hair cells and neighboring supporting cells (SCs). While JAG1's expression is maintained in SCs through adulthood, the function of JAG1 in SC development is unknown. Here, we demonstrate that JAG1 is essential for the formation and maintenance of Hensen's cells, a highly specialized SC subtype located at the edge of the auditory epithelium. Using Sox2CreERT2/+::Jag1loxP/loxP mice of both genders, we show that Jag1 deletion at the onset of differentiation, at embryonic day 14.5, disrupted Hensen's cell formation. Similar loss of Hensen's cells was observed when Jag1 was deleted after Hensen's cell formation at postnatal day (P) 0/P1 and fate-mapping analysis revealed that in the absence of Jag1, some Hensen's cells die, but others convert into neighboring Claudius cells. In support of a role for JAG1 in cell survival, genes involved in mitochondrial function and protein synthesis were downregulated in the sensory epithelium of P0 cochlea lacking Jag1 Finally, using Fgfr3-iCreERT2 ::Jag1loxP/loxP mice to delete Jag1 at P0, we observed a similar loss of Hensen's cells and found that adult Jag1 mutant mice have hearing deficits at the low-frequency range.SIGNIFICANCE STATEMENT Hensen's cells play an essential role in the development and homeostasis of the cochlea. Defects in the biophysical or functional properties of Hensen's cells have been linked to auditory dysfunction and hearing loss. Despite their importance, surprisingly little is known about the molecular mechanisms that guide their development. Morphologic and fate-mapping analyses in our study revealed that, in the absence of the Notch ligand JAGGED1, Hensen's cells died or converted into Claudius cells, which are specialized epithelium-like cells outside the sensory epithelium. Confirming a link between JAGGED1 and cell survival, transcriptional profiling showed that JAGGED1 maintains genes critical for mitochondrial function and tissue homeostasis. Finally, auditory phenotyping revealed that JAGGED1's function in supporting cells is necessary for low-frequency hearing.


Subject(s)
Cochlea/metabolism , Jagged-1 Protein/metabolism , Labyrinth Supporting Cells/physiology , Animals , Cell Survival , Cochlea/cytology , Cochlea/growth & development , Down-Regulation , Evoked Potentials, Auditory, Brain Stem , Female , Gene Expression Regulation, Developmental , Immunohistochemistry , Jagged-1 Protein/genetics , Male , Mice , Mice, Knockout , Pregnancy , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
2.
Mol Pharmacol ; 90(2): 106-15, 2016 08.
Article in English | MEDLINE | ID: mdl-27235390

ABSTRACT

K201 (JTV-519) may prevent abnormal Ca(2+) leak from the sarcoplasmic reticulum (SR) in the ischemic heart and skeletal muscle (SkM) by stabilizing the ryanodine receptors (RyRs; RyR1 and RyR2, respectively). We tested direct modulation of the SR Ca(2+)-stimulated ATPase (SERCA) and RyRs by K201. In isolated cardiac and SkM SR microsomes, K201 slowed the rate of SR Ca(2+) loading, suggesting potential SERCA block and/or RyR agonism. K201 displayed Ca(2+)-dependent inhibition of SERCA-dependent ATPase activity, which was measured in microsomes incubated with 200, 2, and 0.25 µM Ca(2+) and with the half-maximal K201 inhibitory doses (IC50) estimated at 130, 19, and 9 µM (cardiac muscle) and 104, 13, and 5 µM (SkM SR). K201 (≥5 µM) increased RyR1-mediated Ca(2+) release from SkM microsomes. Maximal K201 doses at 80 µM produced ∼37% of the increase in SkM SR Ca(2+) release observed with the RyR agonist caffeine. K201 (≥5 µM) increased the open probability (Po) of very active ("high-activity") RyR1 of SkM reconstituted into bilayers, but it had no effect on "low-activity" channels. Likewise, K201 activated cardiac RyR2 under systolic Ca(2+) conditions (∼5 µM; channels at Po ∼0.3) but not under diastolic Ca(2+) conditions (∼100 nM; Po < 0.01). Thus, K201-induced the inhibition of SR Ca(2+) leak found in cell-system studies may relate to potentially potent SERCA block under resting Ca(2+) conditions. SERCA block likely produces mild SR depletion in normal conditions but could prevent SR Ca(2+) overload under pathologic conditions, thus precluding abnormal RyR-mediated Ca(2+) release.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Muscle, Striated/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Thiazepines/pharmacology , Animals , Calcium/metabolism , Ion Channel Gating/drug effects , Male , Microsomes/drug effects , Microsomes/metabolism , Muscle, Striated/drug effects , Myocardium/metabolism , Rabbits , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...