Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsia ; 60(7): 1412-1423, 2019 07.
Article in English | MEDLINE | ID: mdl-31179549

ABSTRACT

OBJECTIVE: The cystine/glutamate antiporter system xc- could represent a new target for antiepileptogenic treatments due to its crucial roles in glutamate homeostasis and neuroinflammation. To demonstrate this, we compared epilepsy development and seizure susceptibility in xCT knockout mice (xCT-/- ) and in littermate controls (xCT+/+ ) in different chronic models of epilepsy. METHODS: Mice were surgically implanted with electrodes in the basolateral amygdala and chronically stimulated to develop self-sustained status epilepticus (SSSE); continuous video-electroencephalography monitoring was performed for 28 days after SE and hippocampal histopathology was assessed. Corneal kindling was induced by twice daily electrical stimulation at 6 Hz and maintenance of the fully kindled state was evaluated. Next, messenger RNA (mRNA) and protein levels of xCT and of the proteins involved in the phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase 3ß (GSK-3ß)/eukaryotic initiation factor 2α (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway were measured at different time points during epileptogenesis in NMRI mice treated with pilocarpine. Finally, the anticonvulsant effect of sulfasalazine (SAS), a nonselective system xc- inhibitor, was assessed against 6 Hz-evoked seizures in pilocarpine-treated mice. RESULTS: In the SSSE model, xCT-/- mice displayed a significant delayed epileptogenesis, a reduced number of spontaneous recurrent seizures, and less pronounced astrocytic and microglial activation. Moreover, xCT-/- mice showed reduced seizure severity during 6 Hz kindling development and a lower incidence of generalized seizures during the maintenance of the fully kindled state. In pilocarpine-treated mice, protein levels of the PI3K/Akt/GSK-3ß/eIF2α/ATF4 pathway were increased during the chronic phase of the model, consistent with previous findings in the hippocampus of patients with epilepsy. Finally, repeated administration of SAS protected pilocarpine-treated mice against acute 6 Hz seizure induction, in contrast to sham controls, in which system xc- is not activated. SIGNIFICANCE: Inhibition of system xc- could be an attractive target for the development of new therapies with a potential for disease modification in epilepsy.


Subject(s)
Amino Acid Transport System y+/drug effects , Anticonvulsants/pharmacology , Epilepsy/drug therapy , Amino Acid Transport System y+/metabolism , Animals , Anticonvulsants/therapeutic use , Disease Models, Animal , Electroencephalography , Epilepsy/etiology , Epilepsy/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pilocarpine/pharmacology , Status Epilepticus/drug therapy , Status Epilepticus/etiology , Status Epilepticus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...