Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(8): e3002270, 2023 08.
Article in English | MEDLINE | ID: mdl-37590316

ABSTRACT

The widespread occurrence of phenotypic plasticity across all domains of life demonstrates its evolutionary significance. However, how plasticity itself evolves and how it contributes to evolution is poorly understood. Here, we investigate the predatory nematode Pristionchus pacificus with its feeding structure plasticity using recombinant-inbred-line and quantitative-trait-locus (QTL) analyses between natural isolates. We show that a single QTL at a core developmental gene controls the expression of the cannibalistic morph. This QTL is composed of several cis-regulatory elements. Through CRISPR/Cas-9 engineering, we identify copy number variation of potential transcription factor binding sites that interacts with a single intronic nucleotide polymorphism. Another intronic element eliminates gene expression altogether, mimicking knockouts of the locus. Comparisons of additional isolates further support the rapid evolution of these cis-regulatory elements. Finally, an independent QTL study reveals evidence for parallel evolution at the same locus. Thus, combinations of cis-regulatory elements shape plastic trait expression and control nematode cannibalism.


Subject(s)
Adaptation, Physiological , DNA Copy Number Variations , Cannibalism , Introns , Phenotype
2.
Evol Lett ; 7(1): 48-57, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-37065436

ABSTRACT

Developmental plasticity is the ability of a genotype to express multiple phenotypes under different environmental conditions and has been shown to facilitate the evolution of novel traits. However, while the associated cost of plasticity, i.e., the loss in fitness due to the ability to express plasticity in response to environmental change, and the cost of phenotype, i.e., the loss of fitness due to expressing a fixed phenotype across environments, have been theoretically predicted, empirically such costs remain poorly documented and little understood. Here, we use a plasticity model system, hermaphroditic nematode Pristionchus pacificus, to experimentally measure these costs in wild isolates under controlled laboratory conditions. P. pacificus can develop either a bacterial feeding or predatory mouth morph in response to different external stimuli, with natural variation of mouth-morph ratios between strains. We first demonstrated the cost of phenotype by analyzing fecundity and developmental speed in relation to mouth morphs across the P. pacificus phylogenetic tree. Then, we exposed P. pacificus strains to two distinct microbial diets that induce strain-specific mouth-form ratios. Our results indicate that the plastic strain does shoulder a cost of plasticity, i.e., the diet-induced predatory mouth morph is associated with reduced fecundity and slower developmental speed. In contrast, the non-plastic strain suffers from the cost of phenotype since its phenotype does not change to match the unfavorable bacterial diet but shows increased fitness and higher developmental speed on the favorable diet. Furthermore, using a stage-structured population model based on empirically derived life history parameters, we show how population structure can alleviate the cost of plasticity in P. pacificus. The results of the model illustrate the extent to which the costs associated with plasticity and its effect on competition depend on ecological factors. This study provides support for costs of plasticity and phenotype based on empirical and modeling approaches.

3.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36469861

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-ß signaling in nine nematode species and revealed striking variability in TGF-ß gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-ß components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-ß with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-ß mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-ß signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.


Subject(s)
Caenorhabditis elegans Proteins , Rhabditida , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Gene Regulatory Networks , Rhabditida/genetics , Rhabditida/metabolism
4.
Sci Adv ; 7(35)2021 Aug.
Article in English | MEDLINE | ID: mdl-34433565

ABSTRACT

Resource polyphenisms, where single genotypes produce alternative feeding strategies in response to changing environments, are thought to be facilitators of evolutionary novelty. However, understanding the interplay between environment, morphology, and behavior and its significance is complex. We explore a radiation of Pristionchus nematodes with discrete polyphenic mouth forms and associated microbivorous versus cannibalistic traits. Notably, comparing 29 Pristionchus species reveals that reproductive mode strongly correlates with mouth-form plasticity. Male-female species exhibit the microbivorous morph and avoid parent-offspring conflict as indicated by genetic hybrids. In contrast, hermaphroditic species display cannibalistic morphs encouraging competition. Testing predation between 36 co-occurring strains of the hermaphrodite P. pacificus showed that killing inversely correlates with genomic relatedness. These empirical data together with theory reveal that polyphenism (plasticity), kin recognition, and relatedness are three major factors that shape cannibalistic behaviors. Thus, developmental plasticity influences cooperative versus competitive social action strategies in diverse animals.

5.
Sci Rep ; 9(1): 18789, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31827189

ABSTRACT

Nematodes such as Caenorhabditis elegans are powerful systems to study basically all aspects of biology. Their species richness together with tremendous genetic knowledge from C. elegans facilitate the evolutionary study of biological functions using reverse genetics. However, the ability to identify orthologs of candidate genes in other species can be hampered by erroneous gene annotations. To improve gene annotation in the nematode model organism Pristionchus pacificus, we performed a genome-wide screen for C. elegans genes with potentially incorrectly annotated P. pacificus orthologs. We initiated a community-based project to manually inspect more than two thousand candidate loci and to propose new gene models based on recently generated Iso-seq and RNA-seq data. In most cases, misannotation of C. elegans orthologs was due to artificially fused gene predictions and completely missing gene models. The community-based curation raised the gene count from 25,517 to 28,036 and increased the single copy ortholog completeness level from 86% to 97%. This pilot study demonstrates how even small-scale crowdsourcing can drastically improve gene annotations. In future, similar approaches can be used for other species, gene sets, and even larger communities thus making manual annotation of large parts of the genome feasible.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Molecular Sequence Annotation , Rhabditida/genetics , Animals , Catalogs as Topic , Feasibility Studies , Genes, Synthetic , Genome, Helminth , Molecular Sequence Annotation/standards , Pilot Projects , Species Specificity , Transcriptome
6.
iScience ; 10: 123-134, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30513394

ABSTRACT

Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.

7.
Cell Rep ; 23(10): 2835-2843.e4, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874571

ABSTRACT

Switching between alternative complex phenotypes is often regulated by "supergenes," polymorphic clusters of linked genes such as in butterfly mimicry. In contrast, phenotypic plasticity results in alternative complex phenotypes controlled by environmental influences rather than polymorphisms. Here, we show that the developmental switch gene regulating predatory versus non-predatory mouth-form plasticity in the nematode Pristionchus pacificus is part of a multi-gene locus containing two sulfatases and two α-N-acetylglucosaminidases (nag). We provide functional characterization of all four genes, using CRISPR-Cas9-based reverse genetics, and show that nag genes and the previously identified eud-1/sulfatase have opposing influences. Members of the multi-gene locus show non-overlapping neuronal expression and epistatic relationships. The locus architecture is conserved in the entire genus Pristionchus. Interestingly, divergence between paralogs is counteracted by gene conversion, as inferred from phylogenies and genotypes of CRISPR-Cas9-induced mutants. Thus, we found that physical linkage accompanies regulatory linkage between switch genes controlling plasticity in P. pacificus.


Subject(s)
Adaptation, Physiological/genetics , Conserved Sequence , Genes, Developmental , Genetic Loci , Animals , Base Sequence , Body Patterning , Evolution, Molecular , Gene Conversion , Genes, Helminth , Interneurons/metabolism , Nematoda/genetics , Nematoda/physiology , Phenotype , Sensory Receptor Cells/metabolism , Synteny/genetics
8.
Sci Rep ; 7(1): 7207, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28775277

ABSTRACT

Environmental cues can impact development to elicit distinct phenotypes in the adult. The consequences of phenotypic plasticity can have profound effects on morphology, life cycle, and behavior to increase the fitness of the organism. The molecular mechanisms governing these interactions are beginning to be elucidated in a few cases, such as social insects. Nevertheless, there is a paucity of systems that are amenable to rigorous experimentation, preventing both detailed mechanistic insight and the establishment of a generalizable conceptual framework. The mouth dimorphism of the model nematode Pristionchus pacificus offers the rare opportunity to examine the genetics, genomics, and epigenetics of environmental influence on developmental plasticity. Yet there are currently no easily tunable environmental factors that affect mouth-form ratios and are scalable to large cultures required for molecular biology. Here we present a suite of culture conditions to toggle the mouth-form phenotype of P. pacificus. The effects are reversible, do not require the costly or labor-intensive synthesis of chemicals, and proceed through the same pathways previously examined from forward genetic screens. Different species of Pristionchus exhibit different responses to culture conditions, demonstrating unique gene-environment interactions, and providing an opportunity to study environmental influence on a macroevolutionary scale.


Subject(s)
Adaptation, Physiological , Environment , Mouth/anatomy & histology , Nematoda/anatomy & histology , Animals , Biological Evolution , Buffers , Culture Media , Gene-Environment Interaction , Nematoda/genetics , Phenotype
9.
Open Biol ; 7(3)2017 03.
Article in English | MEDLINE | ID: mdl-28298309

ABSTRACT

Phenotypic plasticity has been proposed as an ecological and evolutionary concept. Ecologically, it can help study how genes and the environment interact to produce robust phenotypes. Evolutionarily, as a facilitator it might contribute to phenotypic novelty and diversification. However, the discussion of phenotypic plasticity remains contentious in parts due to the absence of model systems and rigorous genetic studies. Here, we summarize recent work on the nematode Pristionchus pacificus, which exhibits a feeding plasticity allowing predatory or bacteriovorous feeding. We show feeding plasticity to be controlled by developmental switch genes that are themselves under epigenetic control. Phylogenetic and comparative studies support phenotypic plasticity and its role as a facilitator of morphological novelty and diversity.


Subject(s)
Nematoda/genetics , Animal Nutritional Physiological Phenomena , Animals , Biological Evolution , Eating , Epigenesis, Genetic , Feeding Behavior , Nematoda/anatomy & histology , Nematoda/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...