Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
2.
Article in English | MEDLINE | ID: mdl-35457760

ABSTRACT

Physical exercise is a common strategy in overweight and obesity management. Exercise type, intensity, duration, energy expenditure and the rate of perceived exertion (RPE) are the essential determinants of exercise efficiency. The purpose of the present study was to compare continuous and intermittent exercises targeted at the maximal fat oxidation intensity (FAT max) in obese individuals. Ten obese males (BMI > 30 kg/m2; age: 19 to 35 years) who maintained a sedentary lifestyle were recruited for this study to perform three separate exhaustive exercises: a continuous exercise at FAT max (CON), an intermittent exercise that alternates two minutes at FAT max −10% with one minute at FAT max +20% (INT½), and a second intermittent exercise that alternates four minutes at FAT max −10% with one minute at FAT max +40% (INT»). The duration of the INT» exercise (65.1 min ± 13.4) was significantly longer than that of the CON exercise (55.4 min ± 6.0). No significant difference in the total amount of energy expenditure was observed across the three types of exercise (CON: 372 Kcal ± 98.2, INT»: 398 Kcal ± 145.5, INT½: 374.4 Kcal ± 116.1). The fat oxidation rate after 45 min during the INT exercises (INT»: 93.0 ± 19.1 mg/min, INT½: 71.1 ± 15.6 mg/min) was significantly higher than that of the CON exercise (36.1 ± 12.2 mg/min). The CON exercise was less well tolerated. The rate of perceived exertion (RPE) at the end of the CON (15.8 ± 2) was significantly higher than that of the INT exercises (13.5 ± 2 for the INT» and 13.1 ± 1.8 for the INT½). The INT exercises were more efficient in terms of duration, fat oxidation and RPE.


Subject(s)
Oxygen Consumption , Physical Exertion , Adult , Energy Metabolism , Exercise , Humans , Male , Obesity , Young Adult
3.
PLoS One ; 17(4): e0266257, 2022.
Article in English | MEDLINE | ID: mdl-35390047

ABSTRACT

The aim of this longitudinal study was to examine the effects of 1-yr of volleyball practice on the bone mass development in the growing skeleton among prepubescent children. Twenty volleyball players and nine teen matched control boys (Tanner stage 1, at the start of the study) were followed over a 1-yr period. Bone mineral density (BMD, g/cm2), bone mineral content (BMC, g) were measured by dual-energy X-ray absorptiometry on the whole body, lumbar spine (L2-L4), legs, arms, femoral necks, hips and radii. At follow-up, in comparison with controls, volleyball players gained more BMD in whole body (4.5% vs 1.7%; p = 0.014), both nondominant and dominant arms (5.8% vs 1.1% p = 0.005, and 6% vs 2.1%; p = 0.003, respectively), both nondmoninat and dominant legs (9% vs 4.8%; p = 0.005 and 10.7% vs 6% p = 0.0025; respectively), dominant ultradistal radius (10.4% vs 0.9%; p = 0.005), dominant third distal radius (9.6% vs 3.71%; p = 0.023), dominant whole radius (7.4% vs 3.1%; p = 0.017), lumbar spine L2-L4 (9.9% vs 2.8%; p = 0.004), femoral neck (4.7% vs 1.6%; p = 0.034), trochanter (6% vs 1.5%; p<0.001) and total hip (6.1% vs 2.6%; p = 0.006). Volleyball players gained more BMC in both nondominant and dominant arms (25.1% vs 13.4%; p = 0.003, and 26.1% vs 15.6%; p<0.001 respectively), both nondominant and dominant legs (20.2% vs 14.5%; p = 0.004 and 23% vs 16%; p = 0.004, respectively), dominant ultradistal radius (22.4% vs 8.7%; p = 0.002), dominant third distal radius (20.9% vs 5.9%; p = 0.001), dominant whole radius (20% vs 13%), nondominant third distal radius (14.5% vs 5.9%; p = 0.001), nondominant whole radius (21.1% vs 12%; p = 0.002), lumbar spine L2-L4 (21.1% vs 13.7%; p = 0.007), femoral neck (25.9% vs 8.7%; p = 0.007), trochanter (23.5% vs 17.1%; p = 0.006), and total hip (16.3% vs 11.3%; p = 0.009) than controls. A close correlation was observed between the increment (Δ) of whole body lean mass and increased (Δ) BMD and BMC in whole body (r = 0.43, p<0.01, r = 0.73, p<0.001; respectively), lumbar spine (r = 0.54, r = 0.61, p<0.001; respectively), trochanter (r = 0.46, p<0.01, r = 0.35, p<0.05; respectively), and total hip (r = 0.53, p<0.01, r = 0.6, p<0.0001; respectively). In summary, 1-yr of volleyball practice has an osteogenic effect on bone mass in loaded sites in prepubescent boys.


Subject(s)
Bone Density , Volleyball , Absorptiometry, Photon , Adolescent , Child , Femur Neck/diagnostic imaging , Humans , Longitudinal Studies , Lumbar Vertebrae/diagnostic imaging , Male
4.
J Hum Kinet ; 40: 139-48, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-25031682

ABSTRACT

The aims of this study were firstly, to examine the relationship between repeated sprint performance indices and anaerobic speed reserve (AnSR), aerobic fitness and anaerobic power and secondly, to identify the best predictors of sprinting ability among these parameters. Twenty nine subjects (age: 22.5 ± 1.6 years, body height: 1.8 ± 0.1 m, body mass: 68.8 ± 8.5 kg, body mass index (BMI): 22.2 ± 2.1 kg•m-2, fat mass: 11.3 ± 2.9 %) participated in this study. All participants performed a 30 m sprint test (T30) from which we calculated the maximal anaerobic speed (MAnS), vertical and horizontal jumps, 20m multi-stage shuttle run test (MSRT) and repeated sprint test (10 × 15 m shuttle run). AnSR was calculated as the difference between MAnS and the maximal speed reached in the MSRT. Blood lactate sampling was performed 3 min after the RSA protocol. There was no significant correlation between repeated sprint indices (total time (TT); peak time (PT), fatigue index (FI)) and both estimated VO2max and vertical jump performance). TT and PT were significantly correlated with T30 (r=0.63, p=0.001 and r=0.62, p=0.001; respectively), horizontal jump performance (r = -0.47, p = 0.001 and r = -0.49, p = 0.006; respectively) and AnSR (r=-0.68, p= 0.001 and r=-0.70, p=0.001, respectively). Significant correlations were found between blood lactate concentration and TT, PT, and AnSR (r=-0.44, p=0.017; r=-0.43, p=0.018 and r=0.44, p=0.016; respectively). Stepwise multiple regression analyses demonstrated that AnSR was the only significant predictor of the TT and PT, explaining 47% and 50% of the shared variance, respectively. Our findings are of particular interest for coaches and fitness trainers in order to predict repeated sprint performance by using AnSR that can easily identify the respective upper performance limits supported by aerobic and anaerobic power of a player involved in multi-sprint team sports.

5.
J Strength Cond Res ; 25(2): 472-80, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21240028

ABSTRACT

The aim of this study was to evaluate the reliability and validity of a repeated modified agility test (RMAT) to assess anaerobic power and explosiveness. Twenty-seven subjects (age: 20.2 ± 0.9 years, body mass: 66.1 ± 6.0 kg, height: 176 ± 6 cm, and body fat: 11.4 ± 2.6%) participated in this study. After familiarization, subjects completed the RMAT consisting of 10 × 20-m maximal running performances (moving in forward, lateral, and backward) with ~25-second recovery between each run. Ten subjects performed the RMAT twice separated by at least 48 hours to evaluate relative and absolute reliability and usefulness of the test. The criterion validity of the RMAT was determined by examining the relationship between RMAT indices and the Wingate anaerobic test (WAT) performances and both vertical and horizontal jumps. Reliability of the total time (TT) and peak time (PT) of the RMAT was very good, with intraclass correlation coefficient > 0.90 and SEM < 5% and low bias. The usefulness of TT and PT of the RMAT was rated as "good" and "OK," respectively. The TT of the RMAT had significant correlations with the WAT (peak power: r = -0.44; mean power: r = -0.72), vertical jumps (squat jump: r = -0.50; countermovement jump: r = -0.61; drop jump (DJ): r = -0.55; DJ with dominant leg: r = -0.72; DJ with nondominant leg: r = -0.53) and 5 jump test (r = -0.56). These findings suggest that the RMAT is a reliable and valid test for assessing anaerobic power and explosiveness in multisprint sport athletes. Consequently, the RMAT is an easily applied, inexpensive field test and can provide coaches and strength and conditioning professionals with relevant information concerning the choice and the efficacy of training programs.


Subject(s)
Anaerobic Threshold/physiology , Exercise Test/standards , Muscle Strength/physiology , Range of Motion, Articular/physiology , Running/physiology , Athletic Performance/physiology , Cohort Studies , Humans , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Reproducibility of Results , Sensitivity and Specificity , Young Adult
6.
J Strength Cond Res ; 23(6): 1644-51, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19675502

ABSTRACT

The aims of this study were to evaluate the reliability of a modified agility T-test (MAT) and to examine its relationship to the free countermovement jump (FCMJ) and the 10-m straight sprint (10mSS). In this new version, we preserved the same nature of displacement of the T-test but we reduced the total distance to cover. A total of 86 subjects (34 women: age = 22.6 +/- 1.4 years; weight = 63.7 +/- 10.2 kg; height = 1.65 +/- 0.05 m; body mass index = 23.3 +/- 3.3 kg x m(-2) and 52 men: age = 22.4 +/- 1.5 years; weight = 68.7 +/- 8.0 kg; height = 1.77 +/- 0.06 m; body mass index = 22.0 +/- 2.0 kg x m(-2)) performed MAT, T-test, FCMJ, and 10mSS. Our results showed no difference between test-retest MAT scores. Intraclass reliability of the MAT was greater than 0.90 across the trials (0.92 and 0.95 for women and men, respectively). The mean difference (bias) +/- the 95% limits of agreement was 0.03 +/- 0.37 seconds for women and 0.03 +/- 0.33 seconds for men. MAT was correlated to the T-test (r = 0.79, p < 0.001 and r = 0.75, p < 0.001 for women and men, respectively). Significant correlations were found between both MAT and FCMJ, and MAT and 10mSS for women (r = -0.47, p < 0.01 and r = 0.34, p < 0.05, respectively). No significant correlations were found between MAT and all other tests for men. These results indicate that MAT is a reliable test to assess agility. The weak relationship between MAT and strength and straight speed suggests that agility requires other determinants of performance as coordination. Considering that field sports generally include sprints with change direction over short distance, MAT seems to be more specific than the T-test when assessing agility.


Subject(s)
Athletic Performance/physiology , Athletic Performance/standards , Female , Humans , Male , Physical Fitness , Reproducibility of Results , Running/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...