Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 13(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34301040

ABSTRACT

The impact of the immersion in water on the morphology and the thermomechanical properties of a biocomposite made of a matrix of poly (lactic acid) (PLA) modified with an ethylene acrylate toughening agent, and reinforced with miscanthus fibers, has been investigated. Whereas no evidence of hydrolytic degradation has been found, the mechanical properties of the biocomposite have been weakened by the immersion. Scanning electron microscopy (SEM) pictures reveal that the water-induced degradation is mainly driven by the cracking of the fiber/matrix interface, suggesting that the cohesiveness is a preponderant factor to consider for the control of the biocomposite decomposition in aqueous environments. Interestingly, it is observed that the loss of mechanical properties is aggravated when the stereoregularity of PLA is the highest, and when increasing the degree of crystallinity. To investigate the influence of the annealing on the matrix behavior, crystallization at various temperatures has been performed on tensile bars of PLA made by additive manufacturing with an incomplete filling to enhance the contact area between water and polymer. While a clear fragilization occurs in the material crystallized at high temperature, PLA crystallized at low temperature better maintains its properties and even shows high elongation at break likely due to the low size of the spherulites in these annealing conditions. These results show that the tailoring of the mesoscale organization in biopolymers and biocomposites can help control their property evolution and possibly their degradation in water.

2.
Membranes (Basel) ; 11(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498457

ABSTRACT

The barrier performance and structural lightening of organic materials are increasingly desired and constitute a major challenge for manufacturers, particularly for transport and packaging. A promising technique which tends to emerge in recent years is that of multinanolayer coextrusion. The advantage is that it can produce multilayers made of thousands of very thin layers, leading to new properties due to crystalline morphology changes induced by confinement. This paper is focusing on the study of multinanolayered films with alternated polyethylene (PE), compatibilizer (PEgMA) and polyamide 6 (PA6) layers and made by a forced assembly coextrusion process equipped with layer multiplying elements (LME). PE/PA6 multilayer films consisting of 5 to 2049 layers (respectively 0 to 9 LME) were successfully obtained with well-organized multilayered structure. The evolution of the morphology and the microstructure of these two semi-crystalline polymers, when the thickness of each polymer layer decreases from micro-scale to nano-scale, was correlated to the water and gas transport properties of the PE/PA multilayers. The expected improvement of barrier properties was limited due to the on-edge orientation of crystals in very thin PE and PA6 layers. Despite this change of crystalline morphology, a slight improvement of the gas barrier properties was shown by comparing experimental results with permeabilities predicted on the basis of a serial model developed by considering a PE/PA6 interphase. This interphase observed by TEM images and the on-edge crystal orientation in multilayers were evidenced from mechanical properties showing an increase of the stiffness and the strength.

3.
ACS Nano ; 13(5): 4893-4927, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31038925

ABSTRACT

Advanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs). This highly desirable combination of properties was attributed to high macromolecular chain alignment coupled with low crystallinity. Quantitative analysis of the degree of preferred chain orientation will be crucial for control of NF mechanical properties. However, quantification of supramolecular nanoarchitecture in NFs with low crystallinity in the ultrafine diameter range is highly challenging. Here, we discuss the applicability of traditional as well as emerging methods for quantification of polymer chain orientation in nanoscale one-dimensional samples. Advantages and limitations of different techniques are critically evaluated on experimental examples. It is shown that straightforward application of some of the techniques to sub-wavelength-diameter NFs can lead to severe quantitative and even qualitative artifacts. Sources of such size-related artifacts, stemming from instrumental, materials, and geometric phenomena at the nanoscale, are analyzed on the example of polarized Raman method but are relevant to other spectroscopic techniques. A proposed modified, artifact-free method is demonstrated. Outstanding issues and their proposed solutions are discussed. The results provide guidance for accurate nanofiber characterization to improve fundamental understanding and accelerate development of nanofibers and related nanostructured materials produced by electrospinning or other methods. We expect that the discussion in this review will also be useful to studies of many biological systems that exhibit nanofilamentary architectures and combinations of high strength and toughness.


Subject(s)
Nanofibers/chemistry , Polymers/chemistry , Artifacts , Calorimetry, Differential Scanning , Crystallization , Nanofibers/ultrastructure , Spectrum Analysis, Raman
4.
Phys Chem Chem Phys ; 21(2): 702-717, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30543221

ABSTRACT

The present work focusses on the molecular mobility characterization of amorphous N-acetyl-α-methylbenzylamine (Nac-MBA) by Broadband Dielectric Relaxation Spectroscopy (DRS) coupled with Fast Scanning Calorimetry (FSC) and Molecular Dynamics (MD) simulations covering over 12 decades in the frequency range. This study reveals another example of a secondary amide that shows a very intense Debye-like contribution (almost 90% of the global dielectric intensity) in addition to the structural α-relaxation and secondary Johari-Goldstein ß-relaxation. The D- and α-relaxations are separated by about one decade (in frequency) and their relaxation times follow a near parallel temperature evolution (Vogel-Fulcher-Tammann-Hesse). The micro-structure of Nac-MBA has been investigated from MD simulations. It is shown that the intense Debye-like process emanates from the formation of linear intermolecular H-bonding aggregates (precursors of the crystalline structure) generating super-dipole moments.

5.
Int J Pharm ; 540(1-2): 11-21, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29407191

ABSTRACT

The investigation of the glassy state of 5-ethyl-5-methylhydantoin (i.e. 12H, a chiral Active Pharmaceutical Ingredient) was attempted by Differential Scanning Calorimetry (DSC) and Fast Scanning Calorimetry (FSC). This compound exhibits a high crystallization propensity for every enantiomeric composition. Nevertheless, glassy states of pure enantiomer or mixtures between enantiomers were successfully reached by FSC at cooling rates of: 1000 °C/s and 300 °C/s respectively, even though limitations on the sampling reproducibility were evidenced due to FSC sample size. The Glass Forming Ability (GFA) was proven to increase with the counter-enantiomer content. From the glassy state, pure enantiomer displayed a more pronounced crystallogenic character (with a crystallization occurring 36 °C below Tg during ageing) than that of the mixture between enantiomers. Ageing of amorphous 12H promotes a strong nucleation behavior in both samples but enantiopure 12H crystallizes upon ageing while scalemic 12H evolves towards the metastable equilibrium. Finally, potential new phase equilibria (previously not reported) in the enantiomeric phase diagram could have been highlighted by FSC by recrystallization from the amorphous state.


Subject(s)
Hydantoins/chemistry , Transition Temperature , Calorimetry, Differential Scanning , Crystallization , Drug Compounding , Stereoisomerism , Technology, Pharmaceutical/methods
6.
Mol Pharm ; 15(3): 1112-1125, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29328661

ABSTRACT

The effect of low molecular weight excipients on drug-excipient interactions, molecular mobility, and propensity to recrystallization of an amorphous active pharmaceutical ingredient is investigated. Two structurally related excipients (α-pentaacetylglucose and ß-pentaacetylglucose), five different drug:excipient ratios (1:5, 1:2, 1:1, 2:1, and 5:1, w/w), and three different solid state characterization tools (differential scanning calorimetry, X-ray powder diffraction, and dielectric relaxation spectroscopy) were selected for the present research. Our investigation has shown that the excipient concentration and its molecular structure reveal quasi-identical molecular dynamic behavior of solid dispersions above and below the glass transition temperature. Across to complementary quantum mechanical simulations, we point out a clear indication of a strong interaction between biclotymol and the acetylated saccharides. Moreover, the thermodynamic study on these amorphous solid dispersions highlighted a stabilizing effect of α-pentaacetylglucose regardless of its quantity while an excessive concentration of ß-pentaacetylglucose revealed a poor crystallization inhibition. Finally, through long-term stability studies, we also showed the limiting excipient concentration needed to stabilize our amorphous API. Herewith, the developed procedure in this paper appears to be a promising tool for solid-state characterization of complex pharmaceutical formulations.


Subject(s)
Chemistry, Pharmaceutical , Excipients/chemistry , Molecular Dynamics Simulation , Phenols/chemistry , Crystallization , Drug Stability , Spectroscopy, Fourier Transform Infrared , Thermodynamics , X-Ray Diffraction
7.
ACS Omega ; 3(12): 17092-17099, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458329

ABSTRACT

The kinetic fragility of a glass-forming liquid is an important parameter to describe its molecular mobility. In most polymers, the kinetic fragility index obtained from the glassy state by thermally stimulated depolarization current is lower than the one determined in the liquid-like state by dielectric relaxation spectroscopy, as shown in this work for neat polylactide (PLA). When PLA is plasticized to different extents, the fragility calculated in the liquid-like state progressively decreases, until approaching the value of fragility calculated from the glass, which on the other hand remains constant with plasticization. Using the cooperative rearranging region (CRR) concept, it is shown that the decrease of the fragility in the liquid-like state is concomitant with a decrease of the cooperativity length. By splitting the fragility calculated in the liquid, in two contributions: volume and energetic, respectively, dependent and independent on cooperativity, we observed that the slope of the fragility plot in the glass is equivalent to the energetic contribution of the fragility in the liquid. It is then deduced that the difference between the slopes of the relaxation time dependence calculated in both glass and liquid is an indicator of the cooperative character of the segmental relaxation when transiting from liquid to glass. As the main structural consequence of plasticization lies in the decrease of interchain weak bonds, it is assumed that these bonds drive the size of the CRR. In contrast, the dynamics in the glass are independent on plasticization structural effects.

8.
Int J Pharm ; 536(1): 426-433, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29225097

ABSTRACT

Cinchonidine and Theophylline vitrification abilities have been investigated by differential and fast scanning calorimetry. These active pharmaceutical compounds are known in the literature to have a very high tendency to crystallize which has been confirmed by classical differential scanning calorimetry. Due to the growing interest in amorphous pharmaceutical compounds, their possible vitrifications have been investigated by fast scanning calorimetry. This work shows the high potential of this advanced thermal analysis technique to investigate the vitrification of active pharmaceutical compounds by melt-quenching protocol. For the first time, glass transitions of Cinchonidine and Theophylline were measured. From Cinchonidine, it has been shown that complete glassy state can be obtained by cooling from the melt at 2000K/s. Crystallization has also been suppressed by cooling down from the melt at 2K/s. However, such rate does not avoid the formation of nuclei. Theophylline crystallization process has been suppressed by a melt-quenching protocol carried out with a cooling rate of 4000K/s. However, the phenomenon of nuclei formation upon cooling seems unavoidable at this cooling rate. For both active pharmaceutical compounds, physical aging has been observed to play a role on the nuclei formation below the glass transition leading to modify the subsequent crystallization.


Subject(s)
Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning/methods , Crystallization/methods , Glass/chemistry , Phase Transition , Temperature , Theophylline/chemistry , Vitrification
9.
J Phys Chem B ; 121(32): 7729-7740, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28726403

ABSTRACT

A dielectric relaxation spectroscopy (DRS) study was performed to investigate the molecular mobility of amorphous chiral diprophylline (DPL). For this purpose, both racemic DPL and a single enantiomer of DPL were considered. After fast cooling from the melt at very low temperature (-140 °C), progressive heating below and above the glass transition (Tg ≈ 37 °C) induces two secondary relaxations (γ- and δ-) and primary relaxations (α-) for both enantiomeric compositions. After chemical purification of our samples by means of cooling recrystallization, no γ-process could be detected by DRS. Hence, it was highlighted that the molecular mobility in the glassy state is influenced by the presence of theophylline (TPH), the main impurity in DPL samples. We also proved that the dynamic behavior of a single enantiomer and the racemic mixture of the same purified compound are quasi-identical. This study demonstrates that the relative stability and the molecular mobility of chiral amorphous drugs are strongly sensitive to chemical purity.


Subject(s)
Pharmaceutical Preparations/chemistry , Crystallization , Dielectric Spectroscopy , Phase Transition , Stereoisomerism , Temperature , Theophylline/chemistry
10.
J Phys Chem B ; 121(19): 5142-5150, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28430440

ABSTRACT

We study the physicochemical transformations of crystalline quinidine upon high-energy milling. The investigations have been achieved by classical, high performance, and fast scanning calorimetry combined with broadband dielectric spectroscopy and X-ray powder diffraction. As evolution of crystalline quinidine with time of milling revealed a prominent sub-Tg cold-crystallization phenomenon, independent and complementary analytical techniques were implemented. Fast scanning calorimetry was performed for the first time on a milled pharmaceutical compound to postpone the crystallization event to higher temperatures. These fast thermal analyses allowed one to spotlight a genuine glass transition event. In addition, an aging experiment on the milled powder revealed a clear structural relaxation testifying to the presence of a glassy fraction in the milled sample. Last, dielectric analysis of milled quinidine disclosed the presence of localized and delocalized molecular mobility characteristics of glasses. Results for samples obtained by two distinct amorphization routes, vitrification and high-energy milling, indicate that amorphous fraction in milled quinidine behaves the same way as melt-quenched quinidine. These above-mentioned techniques proved their relevancy and efficiency to characterize milled quinidine, and fast scanning calorimetry in particular appears a promising screening tool for disordered systems.


Subject(s)
Quinidine/chemistry , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Crystallization , Dielectric Spectroscopy , Powder Diffraction , Temperature
11.
J Phys Chem B ; 120(30): 7579-92, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27391029

ABSTRACT

In this article, we conduct a comprehensive molecular relaxation study of amorphous Quinidine above and below the glass-transition temperature (Tg) through broadband dielectric relaxation spectroscopy (BDS) experiments and theoretical density functional theory (DFT) calculations, as one major issue with the amorphous state of pharmaceuticals is life expectancy. These techniques enabled us to determine what kind of molecular motions are responsible, or not, for the devitrification of Quinidine. Parameters describing the complex molecular dynamics of amorphous Quinidine, such as Tg, the width of the α relaxation (ßKWW), the temperature dependence of α-relaxation times (τα), the fragility index (m), and the apparent activation energy of secondary γ relaxation (Ea-γ), were characterized. Above Tg (> 60 °C), a medium degree of nonexponentiality (ßKWW = 0.5) was evidenced. An intermediate value of the fragility index (m = 86) enabled us to consider Quinidine as a glass former of medium fragility. Below Tg (< 60 °C), one well-defined secondary γ relaxation, with an apparent activation energy of Ea-γ = 53.8 kJ/mol, was reported. From theoretical DFT calculations, we identified the most reactive part of Quinidine moieties through exploration of the potential energy surface. We evidenced that the clearly visible γ process has an intramolecular origin coming from the rotation of the CH(OH)C9H14N end group. An excess wing observed in amorphous Quinidine was found to be an unresolved Johari-Goldstein relaxation. These studies were supplemented by sub-Tg experimental evaluations of the life expectancy of amorphous Quinidine by X-ray powder diffraction and differential scanning calorimetry. We show that the difference between Tg and the onset temperature for crystallization, Tc, which is 30 K, is sufficiently large to avoid recrystallization of amorphous Quinidine during 16 months of storage under ambient conditions.

12.
Phys Rev E ; 94(6-1): 062502, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28085415

ABSTRACT

This work clarifies the notion of correlated and cooperative motions appearing during the α-relaxation process through the role of the molecular weight of the constitutive units and of the interchain dipolar interactions. By studying amorphous copolymers of poly(ethylene-co-vinyl acetate) with different vinyl acetate contents, we show that the correlated motions are not sensitive to the interchain dipolar interactions, in contrast to the cooperative motions, which increase with a strengthening of the intermolecular interactions for this sample family. Concerning the influence of the molecular weight m_{0}, the notion of "correlated motions" seems to be equivalent to the notion of "cooperative motions" only for low m_{0} systems.

13.
Int J Pharm ; 499(1-2): 67-73, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26707413

ABSTRACT

This study investigates for the first time the thermodynamic changes of Biclotymol upon high-energy milling at various levels of temperature above and below its glass transition temperature (Tg). Investigations have been carried out by temperature modulated differential scanning calorimetry (TM-DSC) and X-ray powder diffraction (XRPD). Results indicate that Biclotymol undergoes a solid-state amorphization upon milling at Tg-45 °C. It is shown that recrystallization of amorphous milled Biclotymol occurs below the glass transition temperature of Biclotymol (Tg=20 °C). This displays molecular mobility differences between milled Biclotymol and quenched liquid. A systematic study at several milling temperatures is performed and the implication of Tg in the solid-state transformations generally observed upon milling is discussed. Influence of analysis temperature with respect to interpretation of results was investigated. Finally, it is shown that co-milling Biclotymol with only 20 wt% of amorphous PVP allows a stable amorphous dispersion during at least 5 months of storage.


Subject(s)
Chemistry, Pharmaceutical/methods , Phenols/chemistry , Thermodynamics , Calorimetry, Differential Scanning , Drug Stability , Drug Storage , Phenols/administration & dosage , Temperature , Transition Temperature , X-Ray Diffraction
14.
Int J Pharm ; 490(1-2): 248-57, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26003417

ABSTRACT

The present case study focuses on the crystallization kinetics and molecular mobility of an amorphous mouth and throat drug namely Biclotymol, through differential scanning calorimetry (DSC), temperature resolved X-ray powder diffraction (TR-XRPD) and hot stage microscopy (HSM). Kinetics of crystallization above the glass transition through isothermal and non-isothermal cold crystallization were considered. Avrami model was used for isothermal crystallization process. Non-isothermal cold crystallization was investigated through Augis and Bennett model. Differences between crystallization processes have been ascribed to a site-saturated nucleation mechanism of the metastable form, confirmed by optical microscopy images. Regarding molecular mobility, a feature of molecular dynamics in glass-forming liquids as thermodynamic fragility index m was determined through calorimetric measurements. It turned out to be around m=100, describing Biclotymol as a fragile glass-former for Angell's classification. Relatively long-term stability of amorphous Biclotymol above Tg was analyzed indirectly by calorimetric monitoring to evaluate thermodynamic parameters and crystallization behavior of glassy Biclotymol. Within eight months of storage above Tg (T=Tg+2°C), amorphous Biclotymol does not show a strong inclination to crystallize and forms a relatively stable glass. This case study, involving a multidisciplinary approach, points out the importance of continuing looking for stability predictors.


Subject(s)
Pharmaceutical Preparations/chemistry , Phenols/chemistry , Calorimetry, Differential Scanning/methods , Cold Temperature , Crystallization , Glass/chemistry , Kinetics , Molecular Dynamics Simulation , Powders/chemistry , Thermodynamics , Transition Temperature , X-Ray Diffraction/methods
15.
J Phys Chem B ; 116(15): 4615-25, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22432898

ABSTRACT

Crystallization is among the easiest ways to improve polymer barrier properties because of the tortuosity increase within the material and the strong coupling between amorphous and crystalline phases. In this work, poly(lactic acid) (PLA) films have undergone α' thermal crystallization or different drawing processes. Although no effect of α' thermal crystallization on water permeability is observed, the drawing processes lead to an enhancement of the PLA barrier properties. This work clearly shows that, in the case of PLA, the crystallinity degree is not the main parameter governing the barrier properties contrary to the crystalline and amorphous phase organizations which play a key role. X-ray analyses confirm that the macromolecular chain orientation in the amorphous phase is the main cause of the improvement of the drawn PLA water barrier property. This improvement is due to the orthotropic structure formation for sufficient draw ratios, particularly when using the Simultaneous Biaxial drawing mode. Moreover, independently of the draw conditions, the drawing process tends to reduce the plasticization coefficient. Consequently, the drawn material barrier properties are not much affected by the water passage.


Subject(s)
Lactic Acid/chemistry , Polymers/chemistry , Water/chemistry , Crystallization , Membranes, Artificial , Polyesters , Surface Properties
16.
J Phys Chem B ; 113(11): 3445-52, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19235991

ABSTRACT

The permeation properties of a semiaromatic polyamide, the poly(m-xylene adipamide) (MXD6), were investigated by water and carbon dioxide permeation experiments (pervaporation and gas permeation tests). Complementary microstructure informations were obtained from calorimetric measurements. Amorphous and semicrystalline MXD6 membranes were studied. The analysis of the water flux through amorphous MXD6 membranes showed a plasticization phenomenon followed by a water-induced crystallization. It resulted that the role played by water in these materials was complex because of the dependence of the water diffusivity on water concentration and time. Because of the presence of crystalline phase, a significant reduction of water and gas permeability of MXD6 and an increase in the delay of diffusion were observed. In terms of barrier properties for water and carbon dioxyde, MXD6 membrane crystallized at high temperature were more performant than water-induced crystallized ones. Correlations between microstructure and transport properties had been so established.

SELECTION OF CITATIONS
SEARCH DETAIL
...