Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 43(11): 4415-4440, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33876342

ABSTRACT

Metal contamination from base metal sulphide mines is a major environmental challenge that poses many ecological and health risks. We examined the metal concentrations in the Dabaoshan mine in South China in water, sediments, and aquatic organisms and their specific characteristics (i.e. size, body tissue, species, and habitat) along the Hengshi and Wengjiang River courses to assess acid mine drainage remediation efforts. Metal concentrations of arsenic, cadmium, chromium, copper, lead, nickel, thallium, and zinc were examined in tissues (i.e. gills, intestines, and muscles) of 17 freshwater species of fish, shrimps, and crabs. Metals in tissues followed the trend: intestines > gills > muscles; nearly all intestine samples exceeded the safe limits of metals analysed in this study. There is a positive correlation between distance from the mine and metal concentrations related to the flow of surface water and the habitat of aquatic organisms. The concentrations of arsenic, copper, and zinc were the highest in aquatic organisms, and the distribution was influenced by physical (distance from mine, currents, and seasonality), chemical (pH and competing ions), and biological (species, habitat, and predator-prey relation) factors. Large demersal fish and benthic fauna had higher concentrations of metals. Bioaccumulation and biomagnification of metals, as well as the high metal pollution index and target hazard quotient (arsenic, cadmium, copper, lead, thallium, and zinc), occurred in bottom feeders (C. aumtus, X. argentea) and fish belonging to higher trophic levels (P. fulvidraco, O. mossambicus). Lead and cadmium indicated the highest level of biomagnification from prey to predator. Health risks exist from the dietary intake of common aquatic species such as tilapia and carp besides crustaceans due to high arsenic, cadmium, lead, and thallium levels. Further reduction of metals is necessary to improve the effects of acid mine drainage in the catchment.


Subject(s)
Carps , Metals, Heavy , Water Pollutants, Chemical , Animals , Aquatic Organisms , China , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Sci Total Environ ; 724: 138122, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32408435

ABSTRACT

Dabaoshan Mine Site (DMS) is the largest polymetallic mine in South China. The Hengshi River flowing next to DMS receives acid mine wastes leaching from the tailings pond and run-off from a treatment plant, which flows into the Wengjiang River. This study focuses on spatiotemporal distribution and mobilization of As, Cd, Pb, and Zn along the Hengshi River, groundwater, fluvial sediments, and soils, with a focus on As due to its high toxicity and the fact that mining is one of the main sources of contamination. Geochemical analyses (heavy metals, grain-size, X-ray diffraction, organic carbon and sulfur content) followed by geochemical modeling (PHREEQC) and statistical assessment were done to determine the physicochemical characteristics, toxicity risks, and behavior of heavy metals. Near the tailings pond, heavy metal concentrations in surface water were 2-100 times higher than the Chinese surface water standard for agriculture. Although water quality during the dry season has improved since the wastewater treatment plant started, heavy metal concentrations were high during rainy season. In groundwater, heavy metal concentrations were low and pose little risks. Soils along the Hengshi River were disturbed and they did not show any specific trends. The potential ecological risk of heavy metals was ranked as Cd > As > Cu > Pb > Zn in sediments and Cd > Cu > Pb > As > Zn in soils indicating multi-metal contamination and toxicity. As(III) was the predominant species in surface water during the dry season, whereas As(V) dominated during the rainy season. Arsenic levels in most sites exceeded the Chinese soil standard. Although As is assumed to have a moderate ecological risk in sediments and low risk in soils, anthropogenic activities, such as mining and land-use changes contribute to the release of As and other heavy metals and pose a risk for local residents.

3.
Sci Total Environ ; 685: 1107-1115, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31390701

ABSTRACT

This study assesses the molecular characteristics of particulate organic matter (POM) in agricultural and food waste digesters and elucidates the molecular properties of the recalcitrant POM fraction, which remains in the digestate after AD process. Molecular properties of POM in influent (substrate) and effluent (digestate) of seven full-scale AD plants (three agricultural waste and four food waste digesters) were characterized and compared using solid-state 13C cross-polarization magic angle spinning (CP-MAS) and solution-state 1H,13C heteronuclear single-quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Comparison of the POM structural compositions of substrate and digestate from each AD plant revealed an enrichment of protein structures relative to the carbohydrates in most cases, implying a preferential degradation of the carbohydrates over proteins and/or increase of microbial biomass upon AD of agricultural and food wastes. Distinctive molecular structures of labile and recalcitrant fractions of POM, subjected to AD, were identified by comparing the NMR spectra of all substrate and digestate POM. Accordingly, the labile POM fraction in food and agricultural solid wastes is characterized by structural entities of lipids and starch-like carbohydrates, whereas recalcitrant POM structures resemble alkyl and aromatic subunits of amino acids, lignin, and polysaccharides with ß-glycosidic linkages. This information serves as a basis to further explore optimization approaches for improving AD of the underutilized POM and the fate of organic matter in digestate-amended arable lands.


Subject(s)
Waste Disposal, Fluid/methods , Anaerobiosis , Magnetic Resonance Spectroscopy , Particulate Matter
4.
Bioresour Technol ; 288: 121587, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31200348

ABSTRACT

This study evaluates a simultaneous assessment of organic matter (OM) and trace elements (TE) bio-accessibility in substrate and digestate from a full-scale anaerobic digester by a sequential OM extraction method. Simultaneous release of TE was determined along with the extraction of different OM fractions and the effects of extracting reagents on characteristics of OM were evaluated by nuclear magnetic resonance (NMR) spectroscopy. The reagents used for sequential extraction of OM were not enough selective. However, proteins were particularly removed by 0.1 M NaOH, while 72% H2SO4 mainly extracted hemicellulose and cellulose. The OM fractionation allowed for simultaneous extraction of >60% of total As, Cd, Co, Fe, Mn, Ni and Zn, while the extraction was limited for Al, Cr, Cu, Mo, and Pb. In substrate, >50% of total As, Co, Mn and Ni and <40% of total Fe, Zn and Mo were identified in bio-accessible fractions. In digestate, all elements demonstrated poor bio-accessibility except for As.


Subject(s)
Metals, Heavy , Trace Elements , Anaerobiosis , Chemical Fractionation
5.
Environ Monit Assess ; 190(6): 336, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29744600

ABSTRACT

Spatial and temporal distribution of trace metals and their cycling is a key issue for understanding the ongoing biogeochemical processes in coastal environments. Sediment cores were collected from six different sampling locations from the Rufiji delta mangrove forests in southeastern coastal Tanzania that are perceived to be impacted by urban development and agricultural activities in the catchment, and pollution in upstream sections of the Rufiji River. The chronology and sediment accumulation rates at these sampling sites were derived based on the distribution of 210Pbexcess method. The trace metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were sequentially extracted as per the BCR method and analyzed. The results indicate that the mass accumulation rates range from 0.40 g cm-2 year-1 (cores NR3 and NR4) to 1.75 g cm-2 year-1 (core SR1). Trace metals in the cores are mainly associated with the residual phase and their abundances in sediments are ranked as Cr > Zn > Ni > Cu > Pb > Cd. The results imply that trace metals in the Rufiji delta mangroves are mainly of crustal origin, and they are less sensitive to weathering. Further, these metals are least available for uptake by plants and they pose limited threat to the biota.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture , Biota , Tanzania , Wetlands
6.
Chemosphere ; 199: 201-209, 2018 May.
Article in English | MEDLINE | ID: mdl-29438947

ABSTRACT

Pretreatment of anaerobic digester samples by hydrochloric acid (HCl) resulted in removal of Fe-based mineral and coordination compounds, attenuating their interferences with solution-state nuclear magnetic resonance (NMR) spectroscopic characterization of the solid phase organic matter. Substrate (influent) and digestate (effluent) samples from two full-scale anaerobic digesters, designated CD (co-digester) and SSD (sewage sludge digester), were investigated. Pretreatment of CD samples with 0.2-2.0 mol l-1 HCl and pretreatment of SSD samples with 1.0-3.0 mol l-1 HCl removed 96-100% and 76-80% of total Fe, respectively. Pretreatment declined overall paramagnetic characteristics of digestate samples, manifested by 50% (CD) and 70% (SSD) decrease in electron paramagnetic resonance signal intensities. As a result, meaningful solution-state 1H,13C heteronuclear single quantum coherence and 1H NMR spectra of DMSO-d6 soluble organic matter could be acquired. Sample pretreatment with the lowest concentration of HCl resulted in alteration of C:N ratios in solid phase, likely due to removal of labile organic and inorganic C- and N-containing compounds, while elevating the HCl concentration did not further change the C:N ratios. Furthermore, sample pretreatment increased the solubility of carbohydrates and proteins in DMSO-d6, enabling the detection of NMR resonances from certain structural units of carbohydrates (e.g. anomeric O2CH) and proteins (e.g. CHα in amino acids). Both attenuation of the paramagnetic matrix as well as an enhanced solubility of carbohydrate and protein fractions of the samples in DMSO-d6 solvent contributed to an improved molecular characterization of anaerobic digester samples by solution-state NMR analysis.


Subject(s)
Hydrochloric Acid/chemistry , Sewage/analysis , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Anaerobiosis , Carbon/analysis , Carbon-13 Magnetic Resonance Spectroscopy , Iron/analysis , Nitrogen/analysis
7.
Sci Total Environ ; 304(1-3): 257-68, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12663188

ABSTRACT

The effects of an aquatic fulvic acid on the pH-dependent adsorption of Hg(II) and Cd(II) to particulate goethite (alpha-FeOOH) were studied in batch systems. The ionic medium consisted of 0.01 M HClO(4) and the total concentrations of mercury and cadmium were maintained at 10(-8) M with 203Hg and 109Cd as tracers. pH In the systems was varied in the range 3-10 by addition of HClO(4) and NaOH. All commercial chemicals were of analytical grade or better. An aquatic fulvic acid (20 ppm), previously isolated and characterised in detail, was used as a model for humic substances and its adsorption to goethite is included in this study. The adsorption of the fulvic acid (20 ppm) onto goethite decreased slowly from 90% at pH 3-7.5 to 10% at pH 10. In systems without fulvic acid the adsorption of mercury increased in a linear fashion from 10% at pH 3 to 70% at pH 10. In the presence of fulvic acid (20 ppm), the adsorption was almost quantitative in the intermediate pH range (pH 5-7), and exceeded 92% over the entire pH range. Thus, association between mercury and the fulvic acid enhanced adsorption in general although the largest impact was found at low pH. Adsorption of cadmium increased from nearly 0 to almost 100% at approximately pH 6. In the presence of fulvic acid, the adsorption increased below pH 7 and decreased above pH 7. The adsorption isotherm for mercury when the concentration was increased from 10(-8) to 1.8 x 10(-4) M showed a corresponding increase of K(d) (l/g) up to a total concentration at 10(-6) M. At higher mercury concentrations K(d) was lowered. In the presence of fulvic acid the corresponding relationship of K(d) was bi-modal, i.e. high values at low and intermediate concentrations of mercury. This behaviour suggests that in the absence of fulvic acid the adsorption follow the expected behaviour, i.e. adsorption sites with similar affinity for mercury. In the presence of fulvic acid, additional adsorption sites are available by the organic molecule (possibly sulfur groups) when it is associated to the goethite. The adsorption isotherm for cadmium indicates a lowering of K(d) at 10(-4) M. Cadmium had no competitive effect on mercury and vice versa. Zinc, however, affected the adsorption of cadmium but not the adsorption of mercury.


Subject(s)
Benzopyrans/chemistry , Cadmium/chemistry , Iron Compounds/chemistry , Mercury/chemistry , Water Pollutants/analysis , Adsorption , Biological Availability , Hydrogen-Ion Concentration , Minerals , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...