Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 114: 109521, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470118

ABSTRACT

In clinical practice, major efforts are underway to identify appropriate drug combinations to boost anticancer activity while suppressing unwanted adverse effects. In this regard, we evaluated the efficacy of combination treatment with the widely used chemotherapeutic drug doxorubicin along with the TGFßRI inhibitor galunisertib (LY2157299) in aggressive B-cell non-Hodgkin lymphoma (B-NHL). The antiproliferative effects of these drugs as single agents or in combination against several B-NHL cell lines and the synergism of the drug combination were evaluated by calculating the combination index. To understand the putative molecular mechanism of drug synergism, the TGF-ß and stress signaling pathways were analyzed after combination treatment. An aggressive lymphoma model was used to evaluate the anticancer activity and post-therapeutic immune response of the drug combination in vivo. Galunisertib sensitized various B-NHL cells to doxorubicin and in combination synergistically increased apoptosis. The antitumor activity of the drug combinations involved upregulation of p-P38 MAPK and inhibition of the TGF-ß/Smad2/3 and PI3K/AKT signaling pathways. Combined drug treatment significantly reduced tumor growth and enhanced survival, indicating that the synergism between galunisertib and Dox observed in vitro was most likely retained in vivo. Based on the tumor-draining lymph node analysis, combination therapy results in better prognosis, including disappearance of disease-exacerbating regulatory T cells and prevention of CD8+ T-cell exhaustion by downregulating MDSCs. Galunisertib synergistically potentiates the doxorubicin-mediated antitumor effect without aggravating the toxic effects and the ability to kickstart the immune system, supporting the clinical relevance of targeting TGF-ßRI in combination with doxorubicin against lymphoma.


Subject(s)
Lymphoma , Neoplasms , Humans , Phosphatidylinositol 3-Kinases/pharmacology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Transforming Growth Factor beta , Immune System , Drug Synergism , Cell Line, Tumor , Apoptosis
2.
Front Immunol ; 13: 988071, 2022.
Article in English | MEDLINE | ID: mdl-36090972

ABSTRACT

T-cell exhaustion plays a pivotal role in the resistance of microsatellite-stable colorectal cancer (CRC) to immunotherapy. Identifying and targeting T-cell exhaustion-activating mechanisms is a promising strategy to augment the effects of immunotherapy. Here, we found that thymidine phosphorylase (TYMP) plays a decisive role in inducing systemic T-cell exhaustion and abrogating the efficacy of dendritic cell (DC) therapy in a CRC model. Targeting TYMP with tipiracil hydrochloride (TPI) induces immunological cell death (ICD). The combined effects of TPI and imiquimod-activated DCs turn CT26 tumors into immunologically 'hot' tumors by inducing ICD in vivo. High-dimensional cytometry analysis revealed T-cell and IFN-γ dependency on the therapeutic outcome. In addition, chemoimmunotherapy converts intratumoral Treg cells into Th1 effector cells and eliminates tumor-associated macrophages, resulting in higher cytotoxic T lymphocyte infiltration and activation. This effect is also associated with the downregulation of PD-L1 expression in tumors, leading to the prevention of T-cell exhaustion. Thus, cooperative and cognitive interactions between dendritic cells and immunogenic cell death induced by therapy with TPI promote the immune response and tumoricidal activities against microsatellite stable colorectal cancer. Our results support TYMP targeting to improve the effects of DC immunotherapy and outcomes in CRC.


Subject(s)
Colorectal Neoplasms , Thymidine Phosphorylase , Dendritic Cells , Humans , Immunologic Factors , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...