Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 157: 108662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38342074

ABSTRACT

Diagnosis of Visceral Leishmaniasis is challenging due to the shared clinical features with malaria, typhoid, and tuberculosis. A CoFe2O4-C60 nanocomposite-based immunosensor decorated with a sensitive A2 peptide antigen was fabricated to detect anti-A2 antibodies for application in visceral leishmaniasis diagnosis. The flame-synthesised nanocomposite was characterised using Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. N terminated specific A2 peptide epitope antigen (NH2-QSVGPLSVGP-OH) was synthesised and characterised by high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS). Using EDC/NHS, A2 peptide antigen (Apg) was immobilised on the CoFe2O4-C60-modified electrode. The performance of the immunosensor, Apg-CoFe2O4-C60NP/GCE, was evaluated by testing its ability to detect varying concentrations of anti-A2 antibody solution in PBS and spiked serum with 1 mM [Fe(CN)6]3-/4- in 0.01 M PBS (pH 7.4) as supporting electrolyte. using differential pulse voltammetry. The immunosensor showed excellent reproducibility and a linear range of 10-10-10-1 µg/mL, with an experimental detection limit of 30.34 fg/mL. These results suggest that the fabricated sensor has great potential as a tool for diagnosing visceral leishmaniasis.


Subject(s)
Biosensing Techniques , Leishmaniasis, Visceral , Metal Nanoparticles , Nanocomposites , Humans , Epitopes , Biosensing Techniques/methods , Leishmaniasis, Visceral/diagnosis , Reproducibility of Results , Immunoassay/methods , Nanocomposites/chemistry , Peptides , Antibodies , Electrochemical Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry
2.
Org Lett ; 25(39): 7137-7141, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37750489

ABSTRACT

Silyloxypyrone-based (5+2) cycloadditions were facilitated by amides that allowed for increased reactivity and a pathway for cleaving the tether to afford net intermolecular cycloadducts. Various amides underwent facile cycloaddition, and several experiments revealed steric and electronic factors that accelerate the reaction. tert-Butyl amides reacted faster than less hindered variants in multiple cases. In the case of dearomative oxidopyrylium-indole (5+2) cycloadditions, an amine-based tether was ineffective, whereas amides enabled this powerful transformation. Theoretical calculations evidenced a concerted asynchronous reaction in which the amide facilitates a conformational driving force enabling cycloaddition. Finally, a one-pot acylation/(5+2) cycloaddition/nucleophilic lactam opening and other examples of tosyl lactam opening of a modified cycloadduct were demonstrated.

3.
ACS Omega ; 8(18): 16228-16240, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179626

ABSTRACT

In pursuit of new antitubercular agents, we here report the antimycobacterial (H37Rv) and DNA gyrase inhibitory potential of daidzein and khellin natural products (NPs). We procured a total of 16 NPs based on their pharmacophoric similarities with known antimycobacterial compounds. The H37Rv strain of M. tuberculosis was found to be susceptible to only two out of the 16 NPs procured; specifically, daidzein and khellin each exhibited an MIC of 25 µg/mL. Moreover, daidzein and khellin inhibited the DNA gyrase enzyme with IC50 values of 0.042 and 0.822 µg/mL, respectively, compared to ciprofloxacin with an IC50 value of 0.018 µg/mL. Daidzein and khellin were found to have lower toxicity toward the vero cell line, with IC50 values of 160.81 and 300.23 µg/mL, respectively. Further, molecular docking study and MD simulation of daidzein indicated that it remained stable inside the cavity of DNA GyrB domain for 100 ns.

4.
J Nanosci Nanotechnol ; 20(5): 3201-3205, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31635665

ABSTRACT

Lead-free Bi-Sn alloy is an alternative solder material with a low eutectic melting temperature and environmental compatibility. Although extensive research has been conducted on this Bi-Sn eutectic alloy, a lack of facile synthetic methods with scalability hinders the implementation of finepatterned interconnectors for emerging electronic applications. In this study, we employed a facile sonochemical synthetic method to synthesize Bi-Sn alloy nanoparticles in large quantities. Highenergy ultrasonication treatment of Bi-Sn bimetallic particles resulted in nanoparticle formation with repeated formation, growth, and collapse of induced gas bubbles. The size of the nanoparticles was controlled from 92 to 506 nm of the mean diameter with variations in ultrasonication power and irradiation time. The nanoparticles exhibited a stable eutectic melting point at 139.8 °C. Interestingly, the sonochemically synthesized nanoparticles exhibited coexistence of metastable Bi2Sn and stable Bi-Sn phases. Finally, we demonstrated that Bi-Sn eutectic nanoparticles could be synthesized at a gram scale of approximately 1.7 g for future mass production.

5.
J Mol Graph Model ; 81: 1-13, 2018 05.
Article in English | MEDLINE | ID: mdl-29455042

ABSTRACT

The mechanistic aspects of cycloaddition reactions of 1,2-cyclohexadiene with olefins and nitrones have been investigated with DFT calculations. The results show that the cycloaddition reactions of 1,2-cyclohexadiene with olefins do not go through a concerted pathway (one-step mechanism) but rather a stepwise one involving the formation of a biradical intermediate which then closes to form final cycloadduct. Electron-withdrawing substituents on the 1,2-cyclohexadiene decrease the activation barrier of the biradical-forming step but increase the barrier of the product-forming step and product stability, while electron-donating substituents on the 1,2-cyclohexadiene increase the barriers for both the biradical-forming step and the product-forming step but decrease the product stability. In the reaction of 1,2-cyclohexadiene with nitrones, the four pathways investigated have activation barriers within 1 kcal/mol of one another, the lowest being 10.45 kcal/mol and the highest 11.04 kcal/mol, indicating that these reactions are very unselective. Electron-withdrawing groups on the nitrone increase the stability of the resulting products whereas electron-donating group on the nitrone decrease the stability of the resulting products. The [3 + 2] cycloadduct proceeds to the formation of a more stable formal [5 + 2] cycloadduct if a phenyl substituent is present on the nitrogen of the nitrone.


Subject(s)
Cyclohexenes/chemistry , Alkenes/chemistry , Cycloaddition Reaction , Molecular Structure , Nitrogen Oxides/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...