Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 120(3): 408-424, 2023 09.
Article in English | MEDLINE | ID: mdl-37475106

ABSTRACT

Antimicrobial tolerance is the ability of a microbial population to survive, but not proliferate, during antimicrobial exposure. Significantly, it has been shown to precede the development of bona fide antimicrobial resistance. We have previously identified the two-component system CroRS as a critical regulator of tolerance to antimicrobials like teixobactin in the bacterial pathogen Enterococcus faecalis. To understand the molecular mechanism of this tolerance, we have carried out RNA-seq analyses in the E. faecalis wild-type and isogenic ∆ croRS mutant to determine the teixobactin-induced CroRS regulon. We identified a 132 gene CroRS regulon and demonstrate that CroRS upregulates biosynthesis of all major components of the enterococcal cell envelope in response to teixobactin. This suggests a coordinating role of this regulatory system in maintaining integrity of the multiple layers of the enterococcal envelope during antimicrobial stress, likely contributing to bacterial survival. Using experimental evolution, we observed that truncation of HppS, a key enzyme in the synthesis of the quinone electron carrier demethylmenaquinone, was sufficient to rescue tolerance in the croRS deletion strain. This highlights a key role for isoprenoid biosynthesis in antimicrobial tolerance in E. faecalis. Here, we propose a model of CroRS acting as a master regulator of cell envelope biogenesis and a gate-keeper between isoprenoid biosynthesis and respiration to ensure tolerance against antimicrobial challenge.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/genetics , Bacterial Proteins/genetics , Homeostasis , Terpenes , Microbial Sensitivity Tests
2.
Adv Microb Physiol ; 81: 25-65, 2022.
Article in English | MEDLINE | ID: mdl-36167442

ABSTRACT

Bacteria have developed resistance against every antimicrobial in clinical use at an alarming rate. There is a critical need for more effective use of antimicrobials to both extend their shelf life and prevent resistance from arising. Significantly, antimicrobial tolerance, i.e., the ability to survive but not proliferate during antimicrobial exposure, has been shown to precede the development of bona fide antimicrobial resistance (AMR), sparking a renewed and rapidly increasing interest in this field. As a consequence, problematic infections for the first time are now being investigated for antimicrobial tolerance, with increasing reports demonstrating in-host evolution of antimicrobial tolerance. Tolerance has been identified in a wide array of bacterial species to all bactericidal antimicrobials. Of particular interest are enterococci, which contain the opportunistic bacterial pathogens Enterococcus faecalis and Enterococcus faecium. Enterococci are one of the leading causes of hospital-acquired infection and possess intrinsic tolerance to a number of antimicrobial classes. Persistence of these infections in the clinic is of growing concern, particularly for the immunocompromised. Here, we review current known mechanisms of antimicrobial tolerance, and include an in-depth analysis of those identified in enterococci with implications for both the development and prevention of AMR.


Subject(s)
Anti-Infective Agents , Enterococcus faecium , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Bacterial , Enterococcus
3.
mSphere ; 4(3)2019 05 08.
Article in English | MEDLINE | ID: mdl-31068434

ABSTRACT

Teixobactin is a new antimicrobial of significant interest. It is active against a number of multidrug-resistant pathogens, including Staphylococcus aureus and Enterococcus faecalis, with no reported mechanisms of teixobactin resistance. However, historically, mechanisms of resistance always exist and arise upon introduction of a new antimicrobial into a clinical setting. Therefore, for teixobactin to remain effective long term, we need to understand how mechanisms of resistance could develop. Here we demonstrate that E. faecalis shows a remarkable intrinsic tolerance to high concentrations of teixobactin. This is of critical importance, as antimicrobial tolerance has been shown to precede the development of antimicrobial resistance. To identify potential pathways responsible for this tolerance, we determined the genomewide expression profile of E. faecalis strain JH2-2 in response to teixobactin using RNA sequencing. A total of 573 genes were differentially expressed (2.0-fold log2 change in expression) in response to teixobactin, with genes involved in cell wall biogenesis and division and transport/binding being among those that were the most upregulated. Comparative analyses of E. faecalis cell wall-targeting antimicrobial transcriptomes identified CroRS, LiaRS, and YclRK to be important two-component regulators of antimicrobial-mediated stress. Further investigation of CroRS demonstrated that deletion of croRS abolished tolerance to teixobactin and to other cell wall-targeting antimicrobials. This highlights the crucial role of CroRS in controlling the molecular response to teixobactin.IMPORTANCE Teixobactin is a new antimicrobial with no known mechanisms of resistance. Understanding how resistance could develop will be crucial to the success and longevity of teixobactin as a new potent antimicrobial. Antimicrobial tolerance has been shown to facilitate the development of resistance, and we show that E. faecalis is intrinsically tolerant to teixobactin at high concentrations. We subsequently chose E. faecalis as a model to elucidate the molecular mechanism underpinning teixobactin tolerance and how this may contribute to the development of teixobactin resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Depsipeptides/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Gene Expression Regulation, Bacterial , Drug Resistance, Bacterial , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation , Genome, Bacterial , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Transcription, Genetic
4.
Appl Environ Microbiol ; 85(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31028029

ABSTRACT

Enterococcus faecalis and Enterococcus faecium are human and animal gut commensals. Vancomycin-resistant enterococci (VRE) are important opportunistic pathogens with limited treatment options. Historically, the glycopeptide antibiotics vancomycin and avoparcin selected for the emergence of vancomycin resistance in human and animal isolates, respectively, resulting in global cessation of avoparcin use between 1997 and 2000. To better understand human- and animal-associated VRE strains in the postavoparcin era, we sequenced the genomes of 231 VRE isolates from New Zealand (NZ; 75 human clinical, 156 poultry) cultured between 1998 and 2009. E. faecium lineages and their antibiotic resistance carriage patterns strictly delineated between agricultural and human reservoirs, with bacitracin resistance ubiquitous in poultry but absent in clinical E. faecium strains. In contrast, one E. faecalis lineage (ST108) predominated in both poultry and human isolates in the 3 years following avoparcin discontinuation. Both phylogenetic and antimicrobial susceptibility (i.e., ubiquitous bacitracin resistance in both poultry and clinical ST108 isolates) analyses suggest an agricultural origin for the ST108 lineage. VRE isolate resistomes were carried on multiple, heterogeneous plasmids. In some isolate genomes, bacitracin, erythromycin, and vancomycin resistance elements were colocalized, indicating multiple potentially linked selection mechanisms.IMPORTANCE Historical antimicrobial use in NZ agriculture has driven the evolution of ST108, a VRE lineage carrying a range of clinically relevant antimicrobial resistances. The persistence of this lineage in NZ for over a decade indicates that coselection may be an important stabilizing mechanism for its persistence.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enterococcus faecalis/drug effects , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology , Enterococcus faecalis/classification , Enterococcus faecalis/genetics , Enterococcus faecium/classification , Enterococcus faecium/drug effects , Enterococcus faecium/genetics , Microbial Sensitivity Tests , New Zealand , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/genetics
5.
Microbiology (Reading) ; 165(4): 475-487, 2019 04.
Article in English | MEDLINE | ID: mdl-30777814

ABSTRACT

Bacitracin is a cell wall targeting antimicrobial with clinical and agricultural applications. With the growing mismatch between antimicrobial resistance and development, it is essential we understand the molecular mechanisms of resistance in order to prioritize and generate new effective antimicrobials. BcrR is a unique membrane-bound one-component system that regulates high-level bacitracin resistance in Enterococcus faecalis. In the presence of bacitracin, BcrR activates transcription of the bcrABD operon conferring resistance through a putative ATP-binding cassette (ABC) transporter (BcrAB). BcrR has three putative functional domains, an N-terminal helix-turn-helix DNA-binding domain, an intermediate oligomerization domain and a C-terminal transmembrane domain. However, the molecular mechanisms of signal transduction remain unknown. Random mutagenesis of bcrR was performed to generate loss- and gain-of-function mutants using transcriptional reporters fused to the target promoter PbcrA. Fifteen unique mutants were isolated across all three proposed functional domains, comprising 14 loss-of-function and one gain-of-function mutant. The gain-of-function variant (G64D) mapped to the putative dimerization domain of BcrR, and functional analyses indicated that the G64D mutant constitutively expresses the PbcrA-luxABCDE reporter. DNA-binding and membrane insertion were not affected in the five mutants chosen for further characterization. Homology modelling revealed putative roles for two key residues (R11 and S33) in BcrR activation. Here we present a new model of BcrR activation and signal transduction, providing valuable insight into the functional characterization of membrane-bound one-component systems and how they can coordinate critical bacterial responses, such as antimicrobial resistance.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacitracin/metabolism , Cell Membrane/metabolism , Drug Resistance, Bacterial , Signal Transduction/physiology , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacitracin/pharmacology , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Mutation , Operon , Promoter Regions, Genetic , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...