Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Curr Biol ; 27(21): 3315-3329.e6, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29107547

ABSTRACT

Granule cells (GCs) in the olfactory bulb (OB) play an important role in odor information processing. Although they have been classified into various neurochemical subtypes, the functional roles of these subtypes remain unknown. We used in vivo two-photon Ca2+ imaging combined with cell-type-specific identification of GCs in the mouse OB to examine whether functionally distinct GC subtypes exist in the bulbar network. We showed that half of GCs express Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα+) and that these neurons are preferentially activated by olfactory stimulation. The higher activity of CaMKIIα+ neurons is due to the weaker inhibitory input that they receive compared to their CaMKIIα-immunonegative (CaMKIIα-) counterparts. In line with these functional data, immunohistochemical analyses showed that 75%-90% of GCs expressing the immediate early gene cFos are CaMKIIα+ in naive animals and in mice that have been exposed to a novel odor and go/no-go operant conditioning, or that have been subjected to long-term associative memory and spontaneous habituation/dishabituation odor discrimination tasks. On the other hand, a perceptual learning task resulted in increased activation of CaMKIIα- cells. Pharmacogenetic inhibition of CaMKIIα+ GCs revealed that this subtype is involved in habituation/dishabituation and go/no-go odor discrimination, but not in perceptual learning. In contrast, pharmacogenetic inhibition of GCs in a subtype-independent manner affected perceptual learning. Our results indicate that functionally distinct populations of GCs exist in the OB and that they play distinct roles during different odor tasks.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Neurons/metabolism , Olfactory Bulb/physiology , Olfactory Perception/physiology , Animals , Behavior, Animal/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/biosynthesis , Male , Mice , Mice, Inbred C57BL , Odorants
2.
Biol Psychiatry ; 80(2): 149-159, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26372002

ABSTRACT

BACKGROUND: In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. METHODS: Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. RESULTS: Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. CONCLUSIONS: Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dendrites/metabolism , Fragile X Mental Retardation Protein/metabolism , Learning/physiology , Neurogenesis/physiology , Neuronal Plasticity/physiology , Olfactory Perception/physiology , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Neuronal Plasticity/genetics , RNA, Messenger
4.
J Cell Sci ; 125(Pt 21): 5159-67, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22899709

ABSTRACT

Blood vessels deliver oxygen, nutrients, hormones and immunity factors throughout the body. To perform these vital functions, vascular cords branch, lumenize and interconnect. Yet, little is known about the cellular, molecular and physiological mechanisms that control how circulatory networks form and interconnect. Specifically, how circulatory networks merge by interconnecting 'in parallel' along their boundaries remains unexplored. To examine this process we studied the formation and functional maturation of the plexus that forms between the dorsal longitudinal anastomotic vessels (DLAVs) in the zebrafish. We find that the migration and proliferation of endothelial cells within the DLAVs and their segmental (Se) vessel precursors drives DLAV plexus formation. Remarkably, the presence of Se vessels containing only endothelial cells of the arterial lineage is sufficient for DLAV plexus morphogenesis, suggesting that endothelial cells from the venous lineage make a dispensable or null contribution to this process. The discovery of a circuit that integrates the inputs of circulatory flow and vascular endothelial growth factor (VEGF) signaling to modulate aortic arch angiogenesis, together with the expression of components of this circuit in the trunk vasculature, prompted us to investigate the role of these inputs and their relationship during DLAV plexus formation. We find that circulatory flow and VEGF signaling make additive contributions to DLAV plexus morphogenesis, rather than acting as essential inputs with equivalent contributions as they do during aortic arch angiogenesis. Our observations underscore the existence of context-dependent differences in the integration of physiological stimuli and signaling cascades during vascular development.


Subject(s)
Arteriovenous Anastomosis/embryology , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Animals , Arteriovenous Anastomosis/cytology , Cell Movement , Cell Proliferation , Endothelial Cells/physiology , Mice , Morphogenesis , Torso/blood supply , Torso/embryology , Vascular Endothelial Growth Factor A/physiology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...