Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4533, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674403

ABSTRACT

Doxorubicin (DOX), a common chemotherapeutic agent, impairs synaptic plasticity. DOX also causes a persistent increase in basal neuronal excitability, which occludes serotonin-induced enhanced excitability. Therefore, we sought to characterize and reverse DOX-induced physiological changes and modulation of molecules implicated in memory induction using sensory neurons from the marine mollusk Aplysia californica. DOX produced two mechanistically distinct phases of extracellular signal-regulated kinase (ERK) activation, an early and a late phase. Inhibition of MEK (mitogen-activated protein kinase (MAPK)/ERK kinase) after DOX treatment reversed the late ERK activation. MEK inhibition during treatment enhanced the late ERK activation possibly through prolonged downregulation of MAPK phosphatase-1 (MKP-1). Unexpectedly, the late ERK activation negatively correlated with excitability. MEK inhibition during DOX treatment simultaneously enhanced the late activation of ERK and blocked the increase in basal excitability. In summary, we report DOX-mediated biphasic activation of ERK and the reversal of the associated changes in neurons, a potential strategy for reversing the deleterious effects of DOX treatment.


Subject(s)
Aplysia/drug effects , Aplysia/physiology , Doxorubicin/pharmacology , Evoked Potentials/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Signal Transduction/drug effects , Animals , Enzyme Activation , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...