Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 96(10): 3725-3732, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28938783

ABSTRACT

Aflatoxins (AF) are toxic metabolites produced by molds, Aspergillus flavus and Aspergillus parasiticus, which frequently contaminate poultry feed ingredients. Ingestion of AF-contaminated feed by chickens leads to deleterious effects, including decreased bird performance and reduced egg production. Moreover, AF residues in fertilized eggs result in huge economic losses by decreasing embryo viability and hatchability. This study investigated the efficacy of 2 generally recognized as safe phytochemicals, namely carvacrol (CR) and trans-cinnamaldehyde (TC), in protecting chicken embryos from AF-induced toxicity. Day-old embryonated eggs were injected with 50 ng or 75 ng AF with or without 0.1% CR or TC, followed by incubation in an incubator for 18 d. Relative embryo weight, yolk sac weight, tibia weight, tibia length, and mortality were recorded on d 18 of incubation. The effect of phytochemicals and methanol (diluent) on embryo viability was also determined. Each experiment had ten treatments with 15 eggs/treatment (n = 150 eggs/experiment) and each experiment was replicated 3 times. Both phytochemicals significantly decreased AF-induced toxicity in chicken embryos. At 75 ng of AF/egg, CR and TC increased the survival of chicken embryo by ∼55%. Moreover, CR and TC increased relative embryo weight by ∼3.3% and 17% when compared to eggs injected with 50 ng or 75 ng AF, respectively. The growth of embryos (tibia length and weight) was improved in phytochemical-treated embryos compared to those injected with AF alone (P < 0.05). Phytochemical and methanol treatments did not adversely affect embryo survival, and other measured parameters as compared to the negative control (P > 0.05). Results from this study demonstrate that CR and TC could reduce AF-induced toxicity in chicken embryos; however, additional studies are warranted to delineate the mechanistic basis behind this effect.


Subject(s)
Acrolein/analogs & derivatives , Aflatoxin B1/toxicity , Chickens/metabolism , Monoterpenes/pharmacology , Poisons/toxicity , Protective Agents/pharmacology , Acrolein/administration & dosage , Acrolein/pharmacology , Animals , Chick Embryo , Chickens/growth & development , Cymenes , Monoterpenes/administration & dosage , Phytochemicals/administration & dosage , Phytochemicals/pharmacology , Protective Agents/administration & dosage
2.
Poult Sci ; 94(9): 2183-90, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217023

ABSTRACT

Aflatoxins (AF) are toxic metabolites primarily produced by molds, Aspergillus flavus and Aspergillus parasiticus. Contamination of poultry feed with AF is a major concern to the poultry industry due to severe economic losses stemming from poor performance, reduced egg production, and diminished egg hatchability. This study investigated the inhibitory effect of 2 generally regarded as safe (GRAS), natural plant compounds, namely carvacrol (CR) and trans-cinnamaldehyde (TC), on A. flavus and A. parasiticus growth and AF production in potato dextrose broth (PDB) and in poultry feed. In broth culture, PDB supplemented with CR (0%, 0.02%, 0.04% and 0.08%) or TC (0%, 0.005%, 0.01% and 0.02%) was inoculated with A. flavus or A. parasiticus (6 log CFU/mL), and mold counts and AF production were determined on days 0, 1, 3, and 5. Similarly, 200 g portions of poultry feed supplemented with CR or TC (0%, 0.4%, 0.8%, and 1.0%) were inoculated with each mold, and their counts and AF concentrations in the feed were determined at 0, 1, 2, 3, 4, 8, and 12 weeks of storage. Moreover, the effect of CR and TC on the expression of AF synthesis genes in A. flavus and A. parasiticus (aflC, nor1, norA, and ver1) was determined using real-time quantitative PCR (RT-qPCR). All experiments had duplicate samples and were replicated 3 times. Results indicated that CR and TC reduced A. flavus and A. parasiticus growth and AF production in broth culture and chicken feed (P<0.05). All tested concentrations of CR and TC decreased AF production in broth culture and chicken feed by at least 60% when compared to controls (P<0.05). In addition, CR and TC down-regulated the expression of major genes associated with AF synthesis in the molds (P<0.05). Results suggest the potential use of CR and TC as feed additives to control AF contamination in poultry feed.


Subject(s)
Acrolein/analogs & derivatives , Aflatoxins/metabolism , Animal Feed/microbiology , Aspergillus flavus/drug effects , Aspergillus/drug effects , Fungicides, Industrial/pharmacology , Monoterpenes/pharmacology , Acrolein/administration & dosage , Acrolein/pharmacology , Animal Feed/analysis , Animals , Aspergillus/genetics , Aspergillus/physiology , Aspergillus flavus/physiology , Chickens , Cymenes , Diet/veterinary , Dietary Supplements/analysis , Fungicides, Industrial/administration & dosage , Monoterpenes/administration & dosage , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
3.
Foodborne Pathog Dis ; 12(7): 591-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26135893

ABSTRACT

Salmonella Enteritidis (SE) is a major foodborne pathogen responsible for causing gastrointestinal infections in humans, predominantly due to the consumption of contaminated eggs. In layer hens, SE colonizes the intestine and migrates to various organs, including the oviduct, thereby leading to egg yolk and shell contamination. This study investigated the efficacy of caprylic acid (CA), a medium-chain fatty acid, in reducing SE colonization and egg contamination in layers. Caprylic acid was supplemented in the feed at 0%, 0.7%, or 1% (vol/wt) from day 1 of the experiment. Birds were challenged with 10(10) log colony-forming units (CFU)/mL of SE by crop gavage on day 10, and re-inoculated (10(10) log CFU/mL) on day 35. After 7 days post first inoculation, eggs were collected daily and tested for SE on the shell and in the yolk separately. The birds were sacrificed on day 66 to determine SE colonization in the ceca, liver, and oviduct. The consumer acceptability of eggs was also determined by triangle test. The experiment was replicated twice. In-feed supplementation of CA (0.7% and 1%) to birds consistently decreased SE on eggshell and in the yolk (p<0.05). Supplementation of CA at 1.0% decreased SE population to ≈14% on the shell and ≈10% in yolk, when compared to control birds, which yielded ≈60% positive samples on shell and ≈43% in yolk. Additionally, SE populations in the cecum and liver were reduced in treated birds compared to control (p<0.05). No significant difference in egg production, body weight, or sensory properties of eggs was observed (p>0.05). The results suggest that CA could potentially be used as a feed additive to reduce eggborne transmission of SE.


Subject(s)
Animal Feed/analysis , Caprylates/pharmacology , Chickens/microbiology , Dietary Supplements , Eggs/microbiology , Salmonella enteritidis/isolation & purification , Animals , Body Weight , Cecum/drug effects , Cecum/microbiology , Colony Count, Microbial , Foodborne Diseases/prevention & control , Foodborne Diseases/veterinary , Humans , Liver/drug effects , Liver/microbiology , Salmonella enteritidis/drug effects , Taste
4.
Poult Sci ; 94(7): 1685-90, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26009758

ABSTRACT

This study investigated the efficacy of two GRAS (generally regarded as safe)-status, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC) and eugenol (EUG) applied as a fumigation treatment in reducing SE on embryonated egg shells. Egg shells of day-old embryonated eggs were spot inoculated with a 4-strain mixture of SE (∼6.5 log CFU/egg) and subjected to fumigation with the aforementioned PDAs (0 or 1% concentration) for 20 minutes in a hatching incubator. SE on the shell and embryo was enumerated on days 1, 3, 6, 9, 13, 16 and 18. On day 13, the eggs were re-inoculated, followed by fumigation treatment for 20 minutes. Since the two PDAs were dissolved in ethanol (final concentration 0.04%), eggs fumigated with ethanol were included as a control.Approximately 6 log CFU/egg of SE were recovered from the shell of untreated, inoculated eggs on days 1 and 13. The fumigation of embryonated egg shells with the two PDAs was more effective in reducing SE on the shell and embryo compared to controls (P < 0.05). On day 18, the eggs fumigated with ethanol were SE positive on the shell, whereas no pathogen was detected on eggs subjected to fumigation with TC and EUG. Similarly, although the embryos of eggs subjected to fumigation with ethanol yielded 1 log CFU/egg of SE on day 18, the embryos of TC and EUG treated eggs were devoid of the pathogen. This study demonstrated that TC and EUG dissolved in 0.04% ethanol could potentially be used as a fumigation treatment for reducing SE on embryonated egg shell, however, quality traits of eggs, including the hatchability need to be ascertained.


Subject(s)
Acrolein/analogs & derivatives , Chickens , Egg Shell/microbiology , Eugenol/pharmacology , Fumigation/standards , Salmonella enteritidis/drug effects , Acrolein/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control
5.
Appl Environ Microbiol ; 81(9): 2985-94, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25710365

ABSTRACT

Salmonella enterica serovar Enteritidis is a major foodborne pathogen in the United States, causing gastroenteritis in humans, primarily through consumption of contaminated eggs. Chickens are the reservoir host of S. Enteritidis. In layer hens, S. Enteritidis colonizes the intestine and migrates to various organs, including the oviduct, leading to egg contamination. This study investigated the efficacy of in-feed supplementation with trans-cinnamaldehyde (TC), a generally recognized as safe (GRAS) plant compound obtained from cinnamon, in reducing S. Enteritidis cecal colonization and systemic spread in layers. Additionally, the effect of TC on S. Enteritidis virulence factors critical for macrophage survival and oviduct colonization was investigated in vitro. The consumer acceptability of eggs was also determined by a triangle test. Supplementation of TC in feed for 66 days at 1 or 1.5% (vol/wt) for 40- or 25-week-old layer chickens decreased the amounts of S. Enteritidis on eggshell and in yolk (P<0.001). Additionally, S. Enteritidis persistence in the cecum, liver, and oviduct in TC-supplemented birds was decreased compared to that in controls (P<0.001). No significant differences in feed intake, body weight, or egg production in birds or in consumer acceptability of eggs were observed (P>0.05). In vitro cell culture assays revealed that TC reduced S. Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells and reduced S. Enteritidis survival in chicken macrophages (P<0.001). Follow-up gene expression analysis using real-time quantitative PCR (qPCR) showed that TC downregulated the expression of S. Enteritidis virulence genes critical for chicken oviduct colonization (P<0.001). The results suggest that TC may potentially be used as a feed additive to reduce egg-borne transmission of S. Enteritidis.


Subject(s)
Acrolein/analogs & derivatives , Anti-Bacterial Agents/administration & dosage , Eggs/microbiology , Salmonella enteritidis/isolation & purification , Acrolein/administration & dosage , Animals , Bacterial Adhesion/drug effects , Cecum/microbiology , Chickens , Epithelial Cells/microbiology , Female , Gene Expression/drug effects , Gene Expression Profiling , Liver/microbiology , Macrophages/microbiology , Microbial Viability/drug effects , Oviducts/microbiology , Real-Time Polymerase Chain Reaction , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis/physiology , United States , Virulence Factors/genetics
6.
Poult Sci ; 92(12): 3228-35, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24235233

ABSTRACT

Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study demonstrates that PDA could effectively be used as a wash treatment to reduce Salmonella Enteritidis on shell eggs. Sensory and quality studies of PDA-washed eggs need to be conducted before recommending their use.


Subject(s)
Anti-Infective Agents/therapeutic use , Chickens , Eggs/microbiology , Food Microbiology/methods , Phytotherapy/veterinary , Poultry Diseases/drug therapy , Salmonella Infections, Animal/drug therapy , Salmonella enteritidis/drug effects , Acrolein/analogs & derivatives , Acrolein/therapeutic use , Animals , Cinnamomum/chemistry , Colony Count, Microbial/veterinary , Cymenes , Disinfection/methods , Eugenol/therapeutic use , Monoterpenes/therapeutic use , Origanum/chemistry , Plant Bark/chemistry , Plant Extracts/therapeutic use , Plant Oils/therapeutic use , Poultry Diseases/epidemiology , Salmonella Infections, Animal/epidemiology , Salmonella enteritidis/isolation & purification , Syzygium/chemistry
7.
Int J Mol Sci ; 14(5): 10608-25, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23698782

ABSTRACT

Salmonella Enteritidis (SE) is a major foodborne pathogen in the United States and one of the most frequently reported Salmonella serotypes globally. Eggs are the most common food product associated with SE infections in humans. The pathogen colonizes the intestinal tract in layers, and migrates to reproductive organs systemically. Since adhesion to and invasion of chicken oviduct epithelial cells (COEC) is critical for SE colonization in reproductive tract, reducing these virulence factors could potentially decrease egg yolk contamination. This study investigated the efficacy of sub-inhibitory concentrations of three plant-derived antimicrobials (PDAs), namely carvacrol, thymol and eugenol in reducing SE adhesion to and invasion of COEC, and survival in chicken macrophages. In addition, the effect of PDAs on SE genes critical for oviduct colonization and macrophage survival was determined using real-time quantitative PCR (RT-qPCR). All PDAs significantly reduced SE adhesion to and invasion of COEC (p < 0.001). The PDAs, except thymol consistently decreased SE survival in macrophages (p < 0.001). RT-qPCR results revealed down-regulation in the expression of genes involved in SE colonization and macrophage survival (p < 0.001). The results indicate that PDAs could potentially be used to control SE colonization in chicken reproductive tract; however, in vivo studies validating these results are warranted.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Adhesion/drug effects , Epithelial Cells/drug effects , Salmonella enteritidis/drug effects , Animals , Avian Proteins/genetics , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Cell Line , Cell Survival/drug effects , Chickens , Cymenes , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Eugenol/pharmacology , Female , Gene Expression/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Monoterpenes/pharmacology , Oviducts/cytology , Plant Preparations/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Salmonella enteritidis/genetics , Salmonella enteritidis/pathogenicity , Thymol/pharmacology , Virulence/genetics
8.
J Food Prot ; 72(4): 722-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19435218

ABSTRACT

Salmonella Enteritidis is a major foodborne pathogen for which chickens serve as reservoir hosts. Reducing Salmonella Enteritidis carriage in chickens would reduce contamination of poultry meat and eggs with this pathogen. We investigated the prophylactic efficacy of feed supplemented with caprylic acid (CA), a natural, generally recognized as safe eight-carbon fatty acid, for reducing Salmonella Enteritidis colonization in chicks. One hundred commercial day-old chicks were randomly divided into five groups of 20 birds each: CA control (no Salmonella Enteritidis, CA), positive control (Salmonella Enteritidis, no CA), negative control (no Salmonella Enteritidis, no CA), and 0.7 or 1% CA. Water and feed were provided ad libitum. On day 8, birds were inoculated with 5.0 log CFU of Salmonella Enteritidis by crop gavage. Six birds from each group were euthanized on days 1, 7, and 10 after challenge, and Salmonella Enteritidis populations in the cecum, small intestine, cloaca, crop, liver, and spleen were enumerated. The study was replicated three times. CA supplementation at 0.7 and 1% consistently decreased Salmonella Enteritidis populations recovered from the treated birds. Salmonella Enteritidis counts in the tissue samples of CA-treated chicks were significantly lower (P < 0.05) than those of control birds on days 7 and 10 after challenge. Feed intake and body weight did not differ between the groups. Histological examination revealed no pathological changes in the cecum and liver of CA-supplemented birds. The results suggest that prophylactic CA supplementation through feed can reduce Salmonella Enteritidis colonization in day-old chicks and may be a useful treatment for reducing Salmonella Enteritidis carriage in chickens.


Subject(s)
Caprylates/pharmacology , Chickens , Diet/veterinary , Salmonella Infections, Animal/prevention & control , Salmonella enteritidis/drug effects , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Carrier State , Cecum/microbiology , Dose-Response Relationship, Drug , Drug Administration Schedule , Gastrointestinal Contents/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...