Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 19(5)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38914083

ABSTRACT

Melt electrowriting (MEW) is an additive manufacturing technique that harnesses electro-hydrodynamic phenomena to produce 3D-printed fibres with diameters on the scale of 10s of microns. The ability to print at this small scale provides opportunities to create structures with incredibly fine resolution and highly defined morphology. The current gold standard material for MEW is poly(ϵ-caprolactone) (PCL), a polymer with excellent biocompatibility but lacking in chemical groups that can allow intrinsic additional functionality. To provide this functionality while maintaining PCL's positive attributes, blending was performed with a Poly(Ethylene Glycol) (PEG)-based Acrylate endcapped Urethane-based Precursor (AUP). AUPs are a group of polymers, built on a backbone of existing polymers, which introduce additional functionality by the addition of one or more acrylate groups that terminate the polymer chain of a backbone polymer. By blending with a 20kDa AUP-PEG in small amounts, it is shown that MEW attributes are preserved, producing high-quality meshes. Blends were produced in various PCL:AUP weight ratios (100:0, 90:10 and 0:100) and processed into both solvent-cast films and MEW meshes that were used to characterise the properties of the blends. It was found that the addition of AUP-PEG to PCL significantly increases the hydrophilicity of structures produced with these polymers, and adds swelling capability compared to the non-swelling PCL. The developed blend (90:10) is shown to be processable using MEW, and the quality of manufactured scaffolds is evaluated against pure PCL scaffolds by performing scanning electron microscopy image analysis, with the quality of the novel MEW blend scaffolds showing comparable quality to that of pure PCL. The presence of the functionalisable AUP material on the surface of the developed scaffolds is also confirmed using fluorescence labelling of the acrylate groups. Biocompatibility of the MEW-processable blend was confirmed through a cell viability study, which found a high degree of cytocompatibility.


Subject(s)
Biocompatible Materials , Hydrophobic and Hydrophilic Interactions , Materials Testing , Polyesters , Polyethylene Glycols , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Polyethylene Glycols/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Humans , Polymers/chemistry , Cell Survival
2.
J Biomed Mater Res A ; 111(6): 851-862, 2023 06.
Article in English | MEDLINE | ID: mdl-36951312

ABSTRACT

The use of polymeric biomaterials to create tissue scaffolds using additive manufacturing techniques is a well-established practice, owing to the incredible rapidity and complexity in design that modern 3D printing methods can provide. One frontier approach is melt electrowriting (MEW), a technique that takes advantage of electrohydrodynamic phenomena to produce fibers on the scale of 10's of microns with designs capable of high resolution and accuracy. Poly(ε-caprolactone) (PCL) is a material that is commonly used in MEW due to its favorable thermal properties, high stability, and biocompatibility. However, one of the drawbacks of this material is that it lacks the necessary chemical groups which allow covalent crosslinking of additional elements onto its structure. Attempts to functionalise PCL structures therefore often rely on the functional units to be applied externally via coatings or integrally mixed elements. Both can be extremely useful depending on their applications, but can add extra difficulties into the use of the resulting structures. Coatings require careful design and application to prevent rapid degradation, while elements mixed into the polymer melt must deal with the possibilities of phase separation and changes to MEW properties of the unadulterated polymer. With this in mind, this study sought to imbibe functionality to MEW-printed scaffolds using the approach of adding functional units directly, via covalent bonding of functional groups to the polymer itself. To this end, this study employs a recently developed class of polymers called acrylate-endcapped urethane-based polymers (AUPs). The polymer backbone of the specific AUP used consists of a poly(D,L-lactic acid) (PDLLA)/PCL copolymer chain, which is functionalized with 6 acrylate groups, 3 at either end. Through blending of the AUP with PCL, various concentrations of this mixture were used with MEW to produce scaffolds that possessed acrylate groups on their surface. Using UV crosslinking, these groups were tagged with Fluorescein-o-Acrylate to verify that PDLLA/PCL AUP/PCL blends facilitate the direct covalent bonding of external agents directly onto the MEW material. Blending of the AUP with PCL increases the scaffold's stiffness and ultimate strength. Finally, blends were proven to be highly biocompatible, with cells attaching and proliferating readily at day 3 and 7 post seeding. Through this work, PDLLA/PCL AUP/PCL blends clearly demonstrated as a biocompatible material that can be processed using MEW to create functionalised tissue scaffolds.


Subject(s)
Biocompatible Materials , Polyesters , Biocompatible Materials/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Polymers/chemistry , Lactic Acid/chemistry , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...