Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22268944

ABSTRACT

Understanding the factors that influence the airborne survival of viruses such as SARS-CoV-2 in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets ([~]5-10{micro}m equilibrated radius) over timescales spanning from 5 seconds to 20 minutes using a novel instrument to probe survival in a small population of droplets (typically 5-10) containing [~]1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to [~]10 % of the starting value was observable for SARS-CoV-2 over 20 minutes, with a large proportion of the loss occurring within the first 5 minutes after aerosolisation. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallise at RHs below 50% leading to a near instant loss of infectivity in 50-60% of the virus. However, at 90% RH the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 minutes, beyond which it decays to only 10% remaining infectious after 10 minutes. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilisation of CO2 from bicarbonate buffer within the droplet. Three different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH. SignificanceThe aerosol microenvironment is highly dynamic exposing pathogens, such as the SARS-CoV-2 virus when exhaled in respiratory aerosol, to extreme conditions of solute concentration, pH and evaporative cooling. Yet surviving this environment is a key step in the transmission of such pathogens. Understanding the impact that airborne transport has on pathogens and the influence of environmental conditions on pathogen survival can inform the implementation of strategies to mitigate the spread of diseases such as COVID-19. We report changes in the infectivity of the airborne virus over timescales spanning from 5 s to 20 minutes and demonstrate the role of two microphysical processes in this infectivity loss: particle crystallisation and aerosol droplet pH change.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-423721

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) manifests as a life-threatening microvascular syndrome. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses the Spike (S) protein to engage with its receptors and infect host cells. To date, it is still not known whether heart vascular pericytes (PCs) are infected by SARS-CoV-2, and if the S protein alone provokes PC dysfunction. Here, we aimed to investigate the effects of the S protein on primary human cardiac PC signalling and function. Results show, for the first time, that cardiac PCs are not permissive to SARS-CoV-2 infection in vitro, whilst a recombinant S protein alone elicits functional alterations in PCs. This was documented as: (1) increased migration, (2) reduced ability to support endothelial cell (EC) network formation on Matrigel, (3) secretion of pro-inflammatory molecules typically involved in the cytokine storm, and (4) production of pro-apoptotic factors responsible for EC death. Next, adopting a blocking strategy against the S protein receptors angiotensin-converting enzyme 2 (ACE2) and CD147, we discovered that the S protein stimulates the phosphorylation/activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) through the CD147 receptor, but not ACE2, in PCs. The neutralisation of CD147, either using a blocking antibody or mRNA silencing, reduced ERK1/2 activation and rescued PC function in the presence of the S protein. In conclusion, our findings suggest that circulating S protein prompts vascular PC dysfunction, potentially contributing to establishing microvascular injury in organs distant from the site of infection. This mechanism may have clinical and therapeutic implications. Clinical perspectiveO_LISevere COVID-19 manifests as a microvascular syndrome, but whether SARS-CoV-2 infects and damages heart vascular pericytes (PCs) remains unknown. C_LIO_LIWe provide evidence that cardiac PCs are not infected by SARS-CoV-2. Importantly, we show that the recombinant S protein alone elicits cellular signalling through the CD147 receptor in cardiac PCs, thereby inducing cell dysfunction and microvascular disruption in vitro. C_LIO_LIThis study suggests that soluble S protein can potentially propagate damage to organs distant from sites of infection, promoting microvascular injury. Blocking the CD147 receptor in patients may help protect the vasculature not only from infection, but also from the collateral damage caused by the S protein. C_LI

SELECTION OF CITATIONS
SEARCH DETAIL
...