Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 10(11)2019 11 11.
Article in English | MEDLINE | ID: mdl-31718047

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer, proving difficult to manage clinically. Wnt-11, a developmentally regulated gene producing a secreted protein, has been associated with various carcinomas but has not previously been studied in PDAC. The present study aimed to elucidate these aspects first in vitro and then in a clinical setting in vivo. Molecular analyses of Wnt-11 expression as well as other biomarkers involved qRT-PCR, RNA-seq and siRNA. Proliferation was measured by MTT; invasiveness was quantified by Boyden chamber (Matrigel) assay. Wnt-11 mRNA was present in three different human PDAC cell lines. Wnt-11 loss affected epithelial-mesenchymal transition and expression of neuronal and stemness biomarkers associated with metastasis. Indeed, silencing Wnt-11 in Panc-1 cells significantly inhibited their Matrigel invasiveness without affecting their proliferative activity. Consistently with the in vitro data, human biopsies of PDAC showed significantly higher Wnt-11 mRNA levels compared with matched adjacent tissues. Expression was significantly upregulated during PDAC progression (TNM stage I to II) and maintained (TNM stages III and IV). Wnt-11 is expressed in PDAC in vitro and in vivo and plays a significant role in the pathophysiology of the disease; this evidence leads to the conclusion that Wnt-11 could serve as a novel, functional biomarker PDAC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Wnt Proteins/metabolism , Biomarkers, Tumor/genetics , Biopsy , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasm Invasiveness/genetics , Neoplasm Staging , Pancreas/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , RNA, Small Interfering/metabolism , RNA-Seq , Survival Analysis , Up-Regulation , Wnt Proteins/genetics
2.
Oncogene ; 38(28): 5700-5724, 2019 07.
Article in English | MEDLINE | ID: mdl-31043708

ABSTRACT

Androgen receptor (AR) signalling is a key prostate cancer (PC) driver, even in advanced 'castrate-resistant' disease (CRPC). To systematically identify microRNAs (miRs) modulating AR activity in lethal disease, hormone-responsive and -resistant PC cells expressing a luciferase-based AR reporter were transfected with a miR inhibitor library; 78 inhibitors significantly altered AR activity. Upon validation, miR-346, miR-361-3p and miR-197 inhibitors markedly reduced AR transcriptional activity, mRNA and protein levels, increased apoptosis, reduced proliferation, repressed EMT, and inhibited PC migration and invasion, demonstrating additive effects with AR inhibition. Corresponding miRs increased AR activity through a novel and anti-dogmatic mechanism of direct association with AR 6.9 kb 3'UTR and transcript stabilisation. In addition, miR-346 and miR-361-3p modulation altered levels of constitutively active AR variants, and inhibited variant-driven PC cell proliferation, so may contribute to persistent AR signalling in CRPC in the absence of circulating androgens. Pathway analysis of AGO-PAR-CLIP-identified miR targets revealed roles in DNA replication and repair, cell cycle, signal transduction and immune function. Silencing these targets, including tumour suppressors ARHGDIA and TAGLN2, phenocopied miR effects, demonstrating physiological relevance. MiR-346 additionally upregulated the oncogene, YWHAZ, which correlated with grade, biochemical relapse and metastasis in patients. These AR-modulatory miRs and targets correlated with AR activity in patient biopsies, and were elevated in response to long-term enzalutamide treatment of patient-derived CRPC xenografts. In summary, we identified miRs that modulate AR activity in PC and CRPC, via novel mechanisms, and may represent novel PC therapeutic targets.


Subject(s)
MicroRNAs/physiology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/physiology , 3' Untranslated Regions , Antisense Elements (Genetics) , Benzamides , Cell Line, Tumor , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Humans , Male , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/pathology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...