Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 15300, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28504266

ABSTRACT

Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1-ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.


Subject(s)
Arabidopsis Proteins/metabolism , Organic Anion Transporters/metabolism , Phosphates/metabolism , Plant Roots/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Enlargement , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Iron/metabolism , Malates/metabolism , Meristem/cytology , Meristem/genetics , Meristem/metabolism , Organic Anion Transporters/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Peroxidase/genetics , Peroxidase/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , Signal Transduction/genetics , Transcription Factors/genetics
2.
Plant Cell Physiol ; 57(4): 690-706, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26865660

ABSTRACT

Phosphate (Pi) is a macronutrient that is essential for plant life. Several regulatory components involved in Pi homeostasis have been identified, revealing a very high complexity at the cellular and subcellular levels. Determining the Pi content in plants is crucial to understanding this regulation, and short real-time(33)Pi uptake imaging experiments have shown Pi movement to be highly dynamic. Furthermore, gene modulation by Pi is finely controlled by localization of this ion at the tissue as well as the cellular and subcellular levels. Deciphering these regulations requires access to and quantification of the Pi pool in the various plant compartments. This review presents the different techniques available to measure, visualize and trace Pi in plants, with a discussion of the future prospects.


Subject(s)
Chromatography/methods , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Phosphates/analysis , Phosphates/metabolism , Plants/metabolism , Biosensing Techniques , Electrophoresis , Genetic Markers , Phosphorus Isotopes/pharmacokinetics , Plants/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...