Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 55(47): 6558-6567, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27797496

ABSTRACT

Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5. To improve our understanding of the molecular basis of the stimulatory effect of b5 and to test the hypothesis that b5 stimulates catalysis by more rapid protonation of the anionic ferric hydroperoxo heme intermediate of P450 (Fe3+OOH)- and subsequent formation of the active oxidizing species (Fe+4═O POR•+), we have freeze-quenched the reaction mixture during a single turnover following reduction of oxyferrous P450 2B4 by each of its redox partners, b5 and P450 reductase. The electron paramagnetic resonance spectra of the freeze-quenched reaction mixtures lacked evidence of a hydroperoxo intermediate when b5 was the reductant presumably because hydroperoxo protonation and catalysis occurred within the dead time of the instrument. However, when P450 reductase was the reductant, a hydroperoxo P450 intermediate was observed. The effect of b5 on the enzymatic efficiency in D2O and the kinetic solvent isotope effect under steady-state conditions are both consistent with the ability of b5 to promote rapid protonation of the hydroperoxo species and more efficient catalysis. In summary, by binding to the proximal surface of P450, b5 stimulates the activity of P450 2B4 by enhancing the rate of protonation of the hydroperoxo intermediate and formation of Compound I, the active oxidizing species, which allows less time for side product formation.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Cytochromes b5/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Protons , Animals , Biocatalysis , Cytochrome P450 Family 2/metabolism , Electron Spin Resonance Spectroscopy , Electrons , Hydrogenation , Kinetics , Models, Biological , NAD/metabolism , Oxidation-Reduction , Protein Binding , Rabbits , Substrate Specificity
2.
Metallomics ; 3(8): 797-815, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21647480

ABSTRACT

Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.


Subject(s)
Bacteria/metabolism , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Metals/metabolism , Anaerobiosis , Bacteria/enzymology , Enzymes/chemistry , Enzymes/metabolism
3.
Biochemistry ; 45(25): 7700-8, 2006 Jun 27.
Article in English | MEDLINE | ID: mdl-16784221

ABSTRACT

4-Oxalocrotonate tautomerase (4-OT) and trans-3-chloroacrylic acid dehalogenase (CaaD) are members of the tautomerase superfamily, a group of structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. 4-OT, from Pseudomonas putida mt-2, catalyzes the conversion of 2-oxo-4-hexenedioate to 2-oxo-3-hexenedioate through the dienol intermediate 2-hydroxymuconate in a catabolic pathway for aromatic hydrocarbons. CaaD, from Pseudomonas pavonaceae 170, catalyzes the hydrolytic dehalogenation of trans-3-chloroacrylate in the trans-1,3-dichloropropene degradation pathway. Both reactions may involve an arginine-stabilized enediolate intermediate, a capability that may partially account for the low-level CaaD activity of 4-OT. Two active-site residues in 4-OT, Leu-8 and Ile-52, have now been mutated to the positionally conserved and catalytic ones in CaaD, alphaArg-8, and alphaGlu-52. The L8R and L8R/I52E mutants show improved CaaD activity (50- and 32-fold increases in k(cat)/K(m), respectively) and diminished 4-OT activity (5- and 1700-fold decreases in k(cat)/K(m), respectively). The increased efficiency of L8R-4-OT for the CaaD reaction stems primarily from an 8.8-fold increase in k(cat), whereas that of the L8R/I52E mutant is due largely to a 23-fold decrease in K(m). The presence of the additional arginine residue in the active site of L8R-4-OT does not alter the pK(a) of the Pro-1 amino group from that measured for the wild type (6.5 +/- 0.1 versus 6.4 +/- 0.2). Moreover, the crystal structure of L8R-4-OT is comparable to that of the wild type. Hence, the enhanced CaaD activity of L8R-4-OT is likely due to the additional arginine residue that can participate in substrate binding and/or stabilization of the putative enediolate intermediate. The results also suggest that the evolution of new functions within the tautomerase superfamily could be quite facile, requiring only a few strategically placed active-site mutations.


Subject(s)
Isomerases/genetics , Binding Sites , Crystallization , Evolution, Molecular , Hydrolases/metabolism , Isomerases/chemistry , Isomerases/metabolism , Kinetics , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Pseudomonas putida/enzymology , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...