Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824211

ABSTRACT

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Subject(s)
Complement C5a , Receptors, Complement , Humans , Complement C5a/genetics , Receptors, Complement/genetics
2.
Nature ; 615(7950): 134-142, 2023 03.
Article in English | MEDLINE | ID: mdl-36470304

ABSTRACT

Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Receptors, Virus , Ursodeoxycholic Acid , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Virus/genetics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/metabolism , COVID-19 Drug Treatment , Cricetinae , Transcription, Genetic , Ursodeoxycholic Acid/pharmacology , Lung/drug effects , Lung/metabolism , Organoids/drug effects , Organoids/metabolism , Liver/drug effects , Liver/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Registries , Reproducibility of Results , Liver Transplantation
3.
Cells ; 9(12)2020 12 15.
Article in English | MEDLINE | ID: mdl-33334013

ABSTRACT

Previous work utilizing proteomic and immunohistochemical analyses has identified that high levels of acid ceramidase (AC) expression confers a poorer response to neoadjuvant treatment in locally advanced rectal cancer. We aimed to assess the radiosensitising effect of biological and pharmacological manipulation of AC and elucidate the underlying mechanism. AC manipulation in three colorectal cancer cell lines (HT29, HCT116 and LIM1215) was achieved using siRNA and plasmid overexpression. Carmofur and a novel small molecular inhibitor (LCL521) were used as pharmacological AC inhibitors. Using clonogenic assays, we demonstrate that an siRNA knockdown of AC enhanced X-ray radiosensitivity across all colorectal cancer cell lines compared to a non-targeting control siRNA, and conversely, AC protein overexpression increased radioresistance. Using CRISPR gene editing, we also generated AC knockout HCT116 cells that were significantly more radiosensitive compared to AC-expressing cells. Similarly, two patient-derived organoid models containing relatively low AC expression were found to be comparatively more radiosensitive than three other models containing higher levels of AC. Additionally, AC inhibition using carmofur and LCL521 in three colorectal cancer cell lines increased cellular radiosensitivity. Decreased AC protein led to significant poly-ADP ribose polymerase-1 (PARP-1) cleavage and apoptosis post-irradiation, which was shown to be executed through a p53-dependent process. Our study demonstrates that expression of AC within colorectal cancer cell lines modulates the cellular response to radiation, and particularly that AC inhibition leads to significantly enhanced radiosensitivity through an elevation in apoptosis. This work further solidifies AC as a target for improving radiotherapy treatment of locally advanced rectal cancer.


Subject(s)
Acid Ceramidase/metabolism , Radiation Tolerance , Rectal Neoplasms/enzymology , Rectal Neoplasms/radiotherapy , Apoptosis/radiation effects , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Survival/radiation effects , Gene Editing , Humans , Models, Biological , Organoids/pathology , Organoids/radiation effects , Tumor Suppressor Protein p53/metabolism , X-Rays
5.
Clin Cancer Res ; 25(13): 3830-3838, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30952636

ABSTRACT

PURPOSE: Anti-EGFR mAbs are effective in the treatment of metastatic colorectal cancer (mCRC) patients. RAS status and tumor location (sidedness) are predictive markers of patients' response to anti-EGFR mAbs. Recently, low miR-31-3p expression levels have been correlated with clinical benefit from the anti-EGFR mAb cetuximab. Here, we aimed to validate the predictive power of miR-31-3p in a prospective cohort of chemorefractory mCRC patients treated with single-agent anti-EGFR mAbs. EXPERIMENTAL DESIGN: miR-31-3p was tested by in situ hybridization (ISH) in 91 pretreatment core biopsies from metastatic deposits of 45 patients with mCRC. Sequential tissue biopsies obtained before treatment, at the time of partial response, and at disease progression were tested to monitor changes in miR-31-3p expression overtreatment. miR-31-3p expression, sidedness, and RAS status in pretreatment cell-free DNA were combined in multivariable regression models to assess the predictive value of each variable alone or in combination. RESULTS: Patients with low miR-31-3p expression in pretreatment biopsies showed better overall response rate, as well as better progression-free survival and overall survival, compared to those with high miR-31-3p expression. The prognostic effect of miR-31-3p was independent from age, gender, and sidedness. No significant changes in the expression of miR-31-3p were observed when sequential tissue biopsies were tested in long-term or poor responders to anti-EGFR mAbs. miR-31-3p scores were similar when pretreatment biopsies were compared with treatment-naïve archival tissues (often primary colorectal cancer). CONCLUSIONS: Our study validates the role of miR-31-3p as potential predictive biomarker of selection for anti-EGFR mAbs.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Gene Expression , MicroRNAs/genetics , Aged , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/mortality , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Humans , Immunohistochemistry , In Situ Hybridization , Male , Middle Aged , Molecular Targeted Therapy , Prognosis , Retreatment , Tomography, X-Ray Computed , Treatment Outcome
6.
Science ; 359(6378): 920-926, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29472484

ABSTRACT

Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Gastrointestinal Neoplasms/drug therapy , Organoids/drug effects , Precision Medicine/methods , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/therapeutic use , Gastrointestinal Neoplasms/pathology , Genomics , Humans , Mice , Neoplasm Metastasis , Organoids/metabolism , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
7.
Mol Genet Metab Rep ; 8: 51-60, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27504265

ABSTRACT

Propionic acidemia (PA) is a life-threatening disease caused by the deficiency of a mitochondrial biotin-dependent enzyme known as propionyl coenzyme-A carboxylase (PCC). This enzyme is responsible for degrading the metabolic intermediate, propionyl coenzyme-A (PP-CoA), derived from multiple metabolic pathways. Currently, except for drastic surgical and dietary intervention that can only provide partial symptomatic relief, no other form of therapeutic option is available for this genetic disorder. Here, we examine a novel approach in protein delivery by specifically targeting and localizing our protein candidate of interest into the mitochondrial matrix of the cells. In order to test this concept of delivery, we have utilized cell penetrating peptides (CPPs) and mitochondria targeting sequences (MTS) to form specific fusion PCC protein, capable of translocating and localizing across cell membranes. In vitro delivery of our candidate fusion proteins, evaluated by confocal images and enzymatic activity assay, indicated effectiveness of this strategy. Therefore, it holds immense potential in creating a new paradigm in site-specific protein delivery and enzyme replacement therapeutic for PA.

8.
World J Gastroenterol ; 16(5): 547-53, 2010 Feb 07.
Article in English | MEDLINE | ID: mdl-20128021

ABSTRACT

We evaluated the efficacy and tolerability of mebeverine, a musculotropic antispasmodic agent, in irritable bowel syndrome (IBS) and compared its usual dosages by meta-analysis. Medical databases and all relevant literature were searched from 1965 to June 2009 for any placebo-controlled clinical trials of mebeverine, using search terms such as mebeverine, clinical trials, and IBS. Eight randomized trials met our criteria, including six trials that compared mebeverine with placebo and two that compared mebeverine tablets with capsules. These eight trials included 555 patients randomized to receive either mebeverine or placebo with 352 (63%) women and 203 (37%) men in all subtypes of IBS. The pooled relative risk (RR) for clinical improvement of mebeverine was 1.13 (95% CI: 0.59-2.16, P = 0.7056) and 1.33 (95% CI: 0.92-1.93, P = 0.129) for relief of abdominal pain. The efficacy of mebeverine 200 mg compared to mebeverine 135 mg indicated RRs of 1.12 (95% CI: 0.96-1.3, P = 0.168) for clinical or global improvement and 1.08 (95% CI: 0.87-1.34, P = 0.463) for relief of abdominal pain. Thus, mebeverine is mostly well tolerated with no significant adverse effects; however, its efficacy in global improvement of IBS is not statistically significant.


Subject(s)
Anticonvulsants/therapeutic use , Irritable Bowel Syndrome/drug therapy , Parasympatholytics/therapeutic use , Phenethylamines/therapeutic use , Databases, Factual , Female , Humans , Irritable Bowel Syndrome/physiopathology , Male , Placebos/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...