Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Phys Med Biol ; 65(24): 245029, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32392546

ABSTRACT

The purpose of this work is to develop accurate computational methods to comprehensively characterize and model the clinical ExacTrac imaging system, which is used as an image guidance system for stereotactic treatment applications. The Spektr toolkit was utilized to simulate the spectral and imaging characterization of the system. Since Spektr only simulates the primary beam (ignoring scatter), a full model of ExacTrac was also developed in Monte Carlo (MC) to characterize the imaging system. To ensure proper performance of both simulation models, Spektr and MC data were compared to the measured spectral and half value layers (HVLs) values. To validate the simulation results, x-ray spectra of the ExacTrac system were measured for various tube potentials using a CdTe spectrometer with multiple added narrow collimators. The raw spectra were calibrated using a 57Co source and corrected for the escape peaks and detector efficiency. HVLs in mm of Al for various energies were measured using a calibrated RaySafe detector. Spektr and MC HVLs were calculated and compared to the measured values. The patient surface dose was calculated for different clinical imaging protocols from the measured air kerma and HVL values following the TG-61 methodology. The x-ray focal spot was measured by slanted edge technique using gafchromic films. ExacTrac imaging system beam profiles were simulated for various energies by MC simulation and the results were benchmarked by experimentally acquired beam profiles using gafchromic films. The effect of 6D IGRT treatment couch on beam hardening, dynamic range of the flat panel detector and scatter effect were determined using both Spektr simulation and experimental measurements. The measured and simulated spectra (of both MC and Spektr) for various kVps were compared and agreed within acceptable error. As another validation, the measured HVLs agreed with the Spektr and MC simulated HVLs on average within 1.0% for all kVps. The maximum and minimum patient surface doses were found to be 1.06 mGy for shoulder (high) and 0.051 mGy for cranial (low) imaging protocols, respectively. The MC simulated beam profiles were well matched with experimental results and replicated the penumbral slopes, the heel effect, and out-of-field regions. Dynamic range of detector (in terms of air kerma at detector surface) was found to be in the range of [6.1 × 10-6, 5.3 × 10-3] mGy. Accurate MC and Spektr models of the ExacTrac image guidance system were successfully developed and benchmarked via experimental validation. While patient surface dose for available imaging protocols were reported in this study, the established MC model may be used to obtain 3D imaging dose distribution for real patient geometries.


Subject(s)
Monte Carlo Method , Radiosurgery , Radiotherapy, Image-Guided/methods , Cadmium Compounds/chemistry , Calibration , Computer Simulation , Humans , Phantoms, Imaging , Quantum Dots , Tellurium/chemistry
2.
Med Phys ; 46(2): 528-543, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30582871

ABSTRACT

PURPOSE: The purpose of this study was to develop a novel patient-specific pixel-based weighting factor dual-energy (PP-DE) algorithm to effectively suppress bone throughout the image and overcome the limitation of the conventional DE algorithm with constant weighting factor which is restricted to regions with uniform patient thickness. Additionally, to derive theoretical expressions to describe the dependence of the weighting factors on several imaging parameters and validate them with measurement. METHODS: A step phantom was constructed consisting of slabs of solid water and bone materials. Thicknesses of bone ranged [0-6] cm in one direction and solid water [5-30] cm in the other direction. Projection images at 60 and 140 kVp were acquired using a clinical imaging system. Optimal weighting factors were found by iteratively varying it in the range [0-1.4], where bone and soft-tissue contrast-to-noise ratio (CNR) reached zero. Bone and soft-tissue digitally reconstructed thicknesses were created using computed tomography (CT) images of a Rando phantom and ray tracing techniques. A weighting factor image (ω) was calculated using digitally reconstructed thicknesses (DRTs) and precalculated weighting factors from the step phantom. This ω image was then used to generate a PP-DE image. The PP-DE image was compared to the conventional DE image which uses a constant weighting factor throughout the image. The effect of the misaligned ω image on PP-DE images was investigated by acquiring LE and HE images at various shifts of Rando phantom. A rigid registration was used based on mutual information algorithm in Matlab. The signal-to-noise ratios (SNR) were calculated in the step phantom for the PP-DE image and compared to that of conventional DE technique. Analytical expressions for theoretical weighting factors were derived which included various effects such as beam hardening, scatter, and detector response. The analytical expressions were simulated in Spektr3.0 for different bone and solid water thicknesses as per the step phantom. A tray of steel pins was constructed and used with the step phantom to remove the scattered radiation. The simulated theoretical weighting factors were validated by comparing to those from the step phantom measurement. RESULTS: Optimal weighting factor values for the step phantom varied from 0.633 to 1.372 depending on region thickness. Thicker regions required larger weighting factors for bone cancellation. The PP-DE image of the Rando phantom favorably cancelled both ribs and spine, whereas in the conventional DE image, only one could be cancelled at a time. The misaligned ω image was less effective in removing all bones indicating the importance of alignment as part of the PP-DE algorithm implementation. The SNRs for the PP-DE image was larger than those of the conventional DE images for regions which required smaller weighting factors for bone suppression. Comparisons of measured and simulated weighting factors demonstrated a 3% agreement for all bone overlapped regions except for the thickest region with 30 cm of solid water overlapped with 6 cm bone where the signal was lost due to excess attenuation. CONCLUSIONS: A novel PP-DE algorithm was developed which can create higher quality DE images with enhanced bone cancellation and improved noise characteristics compared to conventional DE technique. In addition, theoretical weighting factor expressions were derived and validated against measurement.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed/instrumentation , Algorithms , Bone and Bones/diagnostic imaging , Humans , Phantoms, Imaging
3.
Med Phys ; 45(3): 1241-1254, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29344955

ABSTRACT

PURPOSE: The THick Gas Electron Multiplier (THGEM)-based tissue-equivalent proportional counter (TEPC) has been proven to be useful for microdosimetry due to its flexibility in varying the gaseous sensitive volume and achieving high multiplication gain. Aiming at measuring the spatial distribution of radiation dose for mixed neutron-gamma fields, an advanced two-dimensional (2D) THGEM-TEPC was designed and constructed at McMaster University which will enable us to overcome the operational limitation of the classical TEPCs, particularly for high-dose rate fields. Compared to the traditional TEPCs, anode wire electrodes were replaced by a THGEM layer, which not only enhances the gas multiplication gain but also offers a flexible and convenient fabrication for building 2D detectors. METHOD & MATERIALS: The 2D THGEM TEPC consists of an array of 3 × 3 sensitive volumes, equivalent to nine individual TEPCs, each of which has a dimension of 5 mm diameter and length. Taking the overall cost, size and flexibility into account, to process nine detector signals simultaneously, a multi-input digital pulse processing system was developed by using modern microcontrollers, each of which is coupled with a 12-bit sampling ADC. RESULTS: Using the McMaster Tandetron 7 Li(p,n) accelerator neutron source, both fundamental detector performance, as well as neutron dosimetric response of the 2D THGEM-TEPC, has been extensively investigated and compared to the data acquired by a standard spherical TEPC. It was shown that the microdosimetric response and the measured absorbed dose rate of the 2D THGEM detector developed in this study are comparable to the standard 1/2" TEPC which is commercially available. CONCLUSION: This study proved that the 2D TEPC based on the THGEM technology can be effectively used in microdosimetry studies and is a promising detector for measuring the absorbed dose rate distribution over an area in mixed radiation fields. This unique small gas cavity detector opens new possibilities in applications for high-intensity mixed radiation fields as well as in nanodosimetry.


Subject(s)
Electrons , Radiometry/instrumentation , Neutrons
4.
Crit Rev Biomed Eng ; 44(1-2): 73-89, 2016.
Article in English | MEDLINE | ID: mdl-27652452

ABSTRACT

The desire to achieve clinical ultra-high magnetic resonance imaging (MRI) systems stems from the fact that higher field strength leads to higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and spatial resolution. During last few years 7T MRI systems have become a quasi standard for ultra-high field MRI (UhFMRI) systems. This review presents a detailed account of opportunities and challenges associated with a clinical 7T MRI system for cranial and extracranial imaging. As with all of the previous transitions to higher field strengths, the switch from high to UhFMRI is not easy. The engineering and scientific community have to overcome challenges like magnetic field inhomogeneity, patient safety and comfort issues, and cost and related problems in order to achieve a clinically viable UhFMRI system. In addition, a large number of clinical studies are still required to show the improvements in quality of diagnostics that would come with 7T MRI, in order to bring such a research tool to the clinic.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/economics , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Magnetic Resonance Imaging/trends , Patient Safety , Quality Improvement , Signal-To-Noise Ratio
5.
Appl Spectrosc ; 68(1): 79-87, 2014.
Article in English | MEDLINE | ID: mdl-24405957

ABSTRACT

Secondary colorectal liver cancer is the most widespread malignancy in patients with colorectal cancer. The aim of this study is to identify and differentiate between normal liver tissue and malignant secondary colorectal liver cancer tissue using X-ray scattering and X-ray fluorescence spectroscopy to investigate the best combination of data that can be used to enable classification of these two tissue types. X-ray fluorescence (XRF) and coherent scatter data were collected for 24 normal and 24 tumor matched pair tissue samples. The levels of 12 elements (P, S, K, Ca, Cr, Fe, Cu, Zn, As, Se, Br, and Rb) were measured in all samples. When comparisons were made between normal and tumor tissues, statistically significant differences were determined for K (p = 0.046), Ca (p = 0.040), Cr (p = 0.011), Fe, Cu, Zn, Br, and Rb (p < 0.01). However, for P, S, As, and Se, no statistically significant differences were found (p > 0.05). For the coherent scatter spectra collected, three peaks due to adipose, fibrous content, and water content of tissue were observed. The amplitude, full width half-maximum, and area under both fibrous content and water content peaks were found to be significantly higher in secondary colorectal liver tumors compared with surrounding normal liver tissue (p < 0.05). However, no significant differences were found for the adipose peak parameters (p > 0.05). Soft independent modeling of class analogy was performed using the XRF, coherent scatter, and elemental ratio data separately, and the accuracy of the classification of 20 unknown samples was found to be 50, 30, and 80%, respectively. Further analysis has shown that using a combination of the XRF and coherent scatter data in a single combined model gave improved normal and tumor liver tissue classification, with an accuracy that was found to be 85%.


Subject(s)
Colorectal Neoplasms/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/secondary , Liver/chemistry , Liver/pathology , Spectrometry, X-Ray Emission/methods , Case-Control Studies , Humans , Multivariate Analysis , Principal Component Analysis , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...