Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0301275, 2024.
Article in English | MEDLINE | ID: mdl-38820401

ABSTRACT

Skin cancer has a significant impact on the lives of many individuals annually and is recognized as the most prevalent type of cancer. In the United States, an estimated annual incidence of approximately 3.5 million people receiving a diagnosis of skin cancer underscores its widespread prevalence. Furthermore, the prognosis for individuals afflicted with advancing stages of skin cancer experiences a substantial decline in survival rates. This paper is dedicated to aiding healthcare experts in distinguishing between benign and malignant skin cancer cases by employing a range of machine learning and deep learning techniques and different feature extractors and feature selectors to enhance the evaluation metrics. In this paper, different transfer learning models are employed as feature extractors, and to enhance the evaluation metrics, a feature selection layer is designed, which includes diverse techniques such as Univariate, Mutual Information, ANOVA, PCA, XGB, Lasso, Random Forest, and Variance. Among transfer models, DenseNet-201 was selected as the primary feature extractor to identify features from data. Subsequently, the Lasso method was applied for feature selection, utilizing diverse machine learning approaches such as MLP, XGB, RF, and NB. To optimize accuracy and precision, ensemble methods were employed to identify and enhance the best-performing models. The study provides accuracy and sensitivity rates of 87.72% and 92.15%, respectively.


Subject(s)
Deep Learning , Skin Neoplasms , Skin Neoplasms/pathology , Humans , Machine Learning , Algorithms
2.
PeerJ Comput Sci ; 7: e580, 2021.
Article in English | MEDLINE | ID: mdl-34141897

ABSTRACT

Query optimization is the process of identifying the best Query Execution Plan (QEP). The query optimizer produces a close to optimal QEP for the given queries based on the minimum resource usage. The problem is that for a given query, there are plenty of different equivalent execution plans, each with a corresponding execution cost. To produce an effective query plan thus requires examining a large number of alternative plans. Access plan recommendation is an alternative technique to database query optimization, which reuses the previously-generated QEPs to execute new queries. In this technique, the query optimizer uses clustering methods to identify groups of similar queries. However, clustering such large datasets is challenging for traditional clustering algorithms due to huge processing time. Numerous cloud-based platforms have been introduced that offer low-cost solutions for the processing of distributed queries such as Hadoop, Hive, Pig, etc. This paper has applied and tested a model for clustering variant sizes of large query datasets parallelly using MapReduce. The results demonstrate the effectiveness of the parallel implementation of query workloads clustering to achieve good scalability.

SELECTION OF CITATIONS
SEARCH DETAIL
...