Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 18(1): 454, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355696

ABSTRACT

BACKGROUND: Therapies using electromagnetic field technology show evidence of enhanced bone regeneration at the fracture site, potentially preventing delayed or nonunions. METHODS: Combined electric and magnetic field (CEMF) treatment was evaluated in two standardized sheep tibia osteotomy models: a 3-mm non-critical size gap model and a 17-mm critical size defect model augmented with autologous bone grafts, both stabilized with locking compression plates. CEMF treatment was delivered across the fracture gap twice daily for 90 min, starting 4 days postoperatively (post-OP) until sacrifice (9 or 12 weeks post-OP, respectively). Control groups received no CEMF treatment. Bone healing was evaluated radiographically, morphometrically (micro-CT), biomechanically and histologically. RESULTS: In the 3-mm gap model, the CEMF group (n = 6) exhibited higher callus mineral density compared to the Control group (n = 6), two-fold higher biomechanical torsional rigidity and a histologically more advanced callus maturity (no statistically significant differences). In the 17-mm graft model, differences between the Control (n = 6) and CEMF group (n = 6) were more pronounced. The CEMF group showed a radiologically more advanced callus, a higher callus volume (p = 0.003) and a 2.6 × higher biomechanical torsional rigidity (p = 0.024), combined with a histologically more advanced callus maturity and healing. CONCLUSIONS: This study showed that CEMF therapy notably enhanced bone healing resulting in better new bone structure, callus morphology and superior biomechanical properties. This technology could transform a standard inert orthopedic implant into an active device stimulating bone tissue for accelerated healing and regeneration.


Subject(s)
Magnetic Field Therapy , Tibial Fractures , Sheep , Animals , Fracture Healing , Tibia/diagnostic imaging , Tibia/surgery , Bony Callus/diagnostic imaging , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery , Osteotomy , Biomechanical Phenomena
2.
Methods Mol Biol ; 2598: 227-263, 2023.
Article in English | MEDLINE | ID: mdl-36355296

ABSTRACT

In this chapter, an introduction is given into histological techniques to research related to hyaline cartilage and subchondral bone. Emphasis is placed on the importance to investigate cartilage and bone as a unit, which includes the transition zone of the calcified cartilage and tidemark. Reasons for the appropriate selection of histological methods are presented such as when to use (decalcified) specimens for routine paraffin embedding including immunohistology, cryosections of cartilage alone, or non-decalcified specimens for embedding in polymethylmethacrylate with or without additional biomaterials. Appropriate staining methods are also outlined. Apart from detailed laboratory protocols for different embedding and staining methods including open communication about difficulties related to the various techniques, also practical instructions for state-of-the-art evaluation methods and their strengths and weaknesses are given. Sample figures for scoring methods are included.


Subject(s)
Cartilage, Articular , Cartilage, Articular/pathology , Bone and Bones
3.
J Biomed Opt ; 26(9)2021 09.
Article in English | MEDLINE | ID: mdl-34519191

ABSTRACT

SIGNIFICANCE: The highest absorption peaks of the main components of bone are in the mid-infrared region, making Er:YAG and CO2 lasers the most efficient lasers for cutting bone. Yet, studies of deep bone ablation in minimally invasive settings are very limited, as finding suitable materials for coupling high-power laser light with low attenuation beyond 2 µm is not trivial. AIM: The first aim of this study was to compare the performance of different optical fibers in terms of transmitting Er:YAG laser light with a 2.94-µm wavelength at high pulse energy close to 1 J. The second aim was to achieve deep bone ablation using the best-performing fiber, as determined by our experiments. APPROACH: In our study, various optical fibers with low attenuation (λ = 2.94 µm) were used to couple the Er:YAG laser. The fibers were made of germanium oxide, sapphire, zirconium fluoride, and hollow-core silica, respectively. We compared the fibers in terms of transmission efficiency, resistance to high Er:YAG laser energy, and bending flexibility. The best-performing fiber was used to achieve deep bone ablation in a minimally invasive setting. To do this, we adapted the optimal settings for free-space deep bone ablation with an Er:YAG laser found in a previous study. RESULTS: Three of the fibers endured energy per pulse as high as 820 mJ at a repetition rate of 10 Hz. The best-performing fiber, made of germanium oxide, provided higher transmission efficiency and greater bending flexibility than the other fibers. With an output energy of 370 mJ per pulse at 10 Hz repetition rate, we reached a cutting depth of 6.82 ± 0.99 mm in sheep bone. Histology image analysis was performed on the bone tissue adjacent to the laser ablation crater; the images did not show any structural damage. CONCLUSIONS: The findings suggest that our prototype could be used in future generations of endoscopic devices for minimally invasive laserosteotomy.


Subject(s)
Laser Therapy , Lasers, Solid-State , Aluminum Oxide , Animals , Endoscopes , Optical Fibers , Sheep
4.
Pathog Dis ; 79(6)2021 07 02.
Article in English | MEDLINE | ID: mdl-34124751

ABSTRACT

Orthopedic implant-associated bacterial infections with Staphylococcus aureus constitute a major clinical problem, and large pre-clinical animal models remain scarce. The aim of this study was to establish a standardized method of a localized, acute S. aureus bone infection in the presence of complex implanted devices in a sheep model. Four sheep underwent surgery receiving a complex implanted metallic device with a component stabilizing a bone defect created in the left tibial metaphysis, and an attached component placed in adjacent soft tissue. The bone defect was inoculated with S. aureus strain ATCC25293 (1 × 104 CFU). Twenty one days later, the surgery site was macroscopically evaluated, tissue samples and implants harvested for bacterial cell count quantification and tissue samples histologically analyzed. The animals exhibited clinical signs of localized infection (e.g. swelling, lameness, pain) but did not develop symptoms of sepsis. After euthanasia, macroscopic assessment revealed a localized bone and soft tissue infection at the surgery site. Histologically, an acute inflammation with neutrophils but also signs of bone destruction with necrosis was noted. An ovine model of a localized, acute S. aureus bone infection with complex implants was successfully established and could be used to test novel treatments against orthopedic implant-associated infections.


Subject(s)
Osteomyelitis/microbiology , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus , Animals , Biofilms/growth & development , Disease Models, Animal , Humans , Osteomyelitis/diagnostic imaging , Osteomyelitis/pathology , Prostheses and Implants/microbiology , Sheep , Staphylococcal Infections/diagnostic imaging , Staphylococcal Infections/pathology
5.
Biomedicines ; 9(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916829

ABSTRACT

Tendon defects require multimodal therapeutic management over extensive periods and incur high collateral burden with frequent functional losses. Specific cell therapies have recently been developed in parallel to surgical techniques for managing acute and degenerative tendon tissue affections, to optimally stimulate resurgence of structure and function. Cultured primary human fetal progenitor tenocytes (hFPT) have been preliminarily considered for allogeneic homologous cell therapies, and have been characterized as stable, consistent, and sustainable cell sources in vitro. Herein, optimized therapeutic cell sourcing from a single organ donation, industrial transposition of multi-tiered progenitor cell banking, and preliminary preclinical safety of an established hFPT cell source (i.e., FE002-Ten cell type) were investigated. Results underlined high robustness of FE002-Ten hFPTs and suitability for sustainable manufacturing upscaling within optimized biobanking workflows. Absence of toxicity or tumorigenicity of hFPTs was demonstrated in ovo and in vitro, respectively. Furthermore, a 6-week pilot good laboratory practice (GLP) safety study using a rabbit patellar tendon partial-thickness defect model preliminarily confirmed preclinical safety of hFPT-based standardized transplants, wherein no immune reactions, product rejection, or tumour formation were observed. Such results strengthen the rationale of the multimodal Swiss fetal progenitor cell transplantation program and prompt further investigation around such cell sources in preclinical and clinical settings for musculoskeletal regenerative medicine.

6.
Cytotherapy ; 23(6): 536-547, 2021 06.
Article in English | MEDLINE | ID: mdl-33685808

ABSTRACT

BACKGROUND AIMS: Cultured patient-specific keratinocyte sheets have been used clinically since the 1970s for the treatment of large severe burns. However, despite significant developments in recent years, successful and sustainable treatment is still a challenge. Reliable, high-quality grafts with faster availability and a flexible time window for transplantation are required to improve clinical outcomes. METHODS: Keratinocytes are usually grown in vitro at 37°C. Given the large temperature differences in native skin tissue, the aim of the authors' study was to investigate thermal conditioning of keratinocyte sheet production. Therefore, the influence of 31°C, 33°C and 37°C on cell expansion and differentiation in terms of proliferation and sheet formation efficacy was investigated. In addition, the thermal effect on the biological status and thus the quality of the graft was assessed on the basis of the release of wound healing-related biofactors in various stages of graft development. RESULTS: The authors demonstrated that temperature is a decisive factor in the production of human keratinocyte sheets. By using specific temperature ranges, the authors have succeeded in optimizing the individual manufacturing steps. During the cell expansion phase, cultivation at 37°C was most effective. After 6 days of culture at 37°C, three times and six times higher numbers of viable cells were obtained compared with 33°C and 31°C. During the cell differentiation and sheet formation phase, however, the cells benefited from a mildly hypothermic temperature of 33°C. Keratinocytes showed increased differentiation potential and formed better epidermal structures, which led to faster biomechanical sheet stability at day 18. In addition, a cultivation temperature of 33°C resulted in a longer lasting and higher secretion of the investigated immunomodulatory, anti-inflammatory, angiogenic and pro-inflammatory biofactors. CONCLUSIONS: These results show that by using specific temperature ranges, it is possible to accelerate the large-scale production of cultivated keratinocyte sheets while at the same time improving quality. Cultivated keratinocyte sheets are available as early as 18 days post-biopsy and at any time for 7 days thereafter, which increases the flexibility of the process for surgeons and patients alike. These findings will help to provide better clinical outcomes, with an increased take rate in severe burn patients.


Subject(s)
Burns , Keratinocytes , Burns/therapy , Cell Differentiation , Cells, Cultured , Humans , Skin , Skin Transplantation , Wound Healing
7.
Cartilage ; 13(2_suppl): 636S-649S, 2021 12.
Article in English | MEDLINE | ID: mdl-33511860

ABSTRACT

OBJECTIVE: Hyaluronic acid-transglutaminase (HA-TG) is an enzymatically crosslinkable adhesive hydrogel with chondrogenic properties demonstrated in vitro and in an ectopic mouse model. In this study, we investigated the feasibility of using HA-TG in a collagen scaffold to treat chondral lesions in an ovine model, to evaluate cartilage regeneration in a mechanically and biologically challenging joint environment, and the influence of the surgical procedure on the repair process. DESIGN: Chondral defects of 6-mm diameter were created in the stifle joint of skeletally mature sheep. In a 3-month study, 6 defects were treated with HA-TG in a collagen scaffold to test the stability and biocompatibility of the defect filling. In a 6-month study, 6 sheep had 12 defects treated with HA-TG and collagen and 2 sheep had 4 untreated defects. Histologically observed quality of repair tissue and adjacent cartilage was semiquantitatively assessed. RESULTS: HA-TG adhered to the native tissue and did not cause any detectable negative reaction in the surrounding tissue. HA-TG in a collagen scaffold supported infiltration and chondrogenic differentiation of mesenchymal cells, which migrated from the subchondral bone through the calcified cartilage layer. Additionally, HA-TG and collagen treatment led to better adjacent cartilage preservation compared with empty defects (P < 0.05). CONCLUSIONS: This study demonstrates that the adhesive HA-TG hydrogel in a collagen scaffold shows good biocompatibility, supports in situ cartilage regeneration and preserves the surrounding cartilage. This proof-of-concept study shows the potential of this approach, which should be further considered in the treatment of cartilage lesions using a single-step procedure.


Subject(s)
Hyaluronic Acid , Hydrogels , Adhesives , Animals , Cartilage , Collagen , Hyaluronic Acid/pharmacology , Mice , Sheep
8.
Biomaterials ; 35(6): 1890-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24331703

ABSTRACT

Mechanical stimulation has been proposed to induce chondrogenesis in cell-seeded scaffolds. However, the effects of mechanical stimuli on engineered cartilage may vary substantially between different scaffolds. This advocates for the need to identify an overarching mechanobiological variable. We hypothesize that energy dissipation of scaffolds subjected to dynamic loading may be used as a mechanobiology variable. The energy dissipation would furnish a general criterion to adjust the mechanical stimulation favoring chondrogenesis in scaffold. Epiphyseal chondro-progenitor cells were then subject to unconfined compression 2 h per day during four days in different scaffolds, which differ only by the level of dissipation they generated while keeping the same loading conditions. Scaffolds with higher dissipation levels upregulated the mRNA of chondrogenic markers. In contrast lower dissipation of scaffolds was associated with downregulation of chondrogenic markers. These results showed that energy dissipation could be considered as a mechanobiology variable in cartilage. This study also indicated that scaffolds with energy dissipation level close to the one of cartilage favors chondrogenic expression when dynamical loading is present.


Subject(s)
Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cartilage/chemistry , Cells, Cultured , Chondrogenesis/physiology , Humans
9.
Fibrogenesis Tissue Repair ; 6(1): 8, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23570605

ABSTRACT

BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Lausanne University Hospital, Switzerland in 45 patients, randomized to three different topical treatment groups: standard treatment serving as control, autologous platelet concentrate (PC) and keratinocytes suspended in autologous platelet concentrate (PC + K). Split thickness skin graft donor sites were chosen on the anterolateral thighs of patients undergoing plastic surgery for a variety of defects. Wound healing was assessed by the duration and quality of the healing process. Pain intensity was evaluated at day five. RESULTS: Healing time was reduced from 13.9 ± 0.5 days (mean ± SEM) in the control group to 7.2 ± 0.2 days in the PC group (P < 0.01). An addition of keratinocytes in suspension further reduced the healing time to 5.7 ± 0.2 days. Pain was reduced in both the PC and PC + K groups. Data showed a statistically detectable advantage of using PC + K over PC alone (P < 0.01). CONCLUSION: The results demonstrate the positive contribution of autologous platelets combined with keratinocytes in stimulating wound healing and reducing pain. This strikingly simple approach could have a significant impact on patient care, especially critically burned victims for whom time is of the essence. CLINICAL TRIAL REGISTRY INFORMATION: Protocol Record Identification Number: 132/03Registry URL: http://www.clinicaltrials.gov.

SELECTION OF CITATIONS
SEARCH DETAIL
...