Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nanotechnology ; 31(5): 055301, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31561237

ABSTRACT

Given its high temperature stability, oxidation-, corrosion- and wear-resistance, and ferromagnetic properties, Nickel (Ni) is one of the most technologically important metals. This article reports that pure and nanocrystalline (Ni) films with excellent mechanical and magnetic properties can be additively printed at room environment without any high-temperature post-processing. The printing process is based on a nozzle-based electrochemical deposition from the classical Watt's bath. The printed Ni film showed a preferred (220) and (111) texture based on x-ray diffraction spectra. The printed Ni film had close to bulk electrical conductivity; its indentation elastic modulus and hardness was measured to be 203 ± 6.7 GPa and 6.27 ± 0.34 GPa, respectively. Magnetoresistance, magnetic hysteresis loop, and magnetic domain imaging showed promising results of the printed Ni for functional applications.

3.
Sci Rep ; 9(1): 19032, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31836818

ABSTRACT

Printing functional devices on flexible substrates requires printing of high conductivity metallic patterns. To prevent deformation and damage of the polymeric substrate, the processing (printing) and post-processing (annealing) temperature of the metal patterns must be lower than the glass transition temperature of the substrate. Here, a hybrid process including deposition of a sacrificial blanket thin film, followed by room environment nozzle-based electrodeposition, and subsequent etching of the blanket film is demonstrated to print pure and nanocrystalline metallic (Ni and Cu) patterns on flexible substrates (PI and PET). Microscopy and spectroscopy showed that the printed metal is nanocrystalline, solid with no porosity and with low impurities. Electrical resistivity close to the bulk (~2-time) was obtained without any thermal annealing. Mechanical characterization confirmed excellent cyclic strength of the deposited metal, with limited degradation under high cyclic flexure. Several devices including radio frequency identification (RFID) tag, heater, strain gauge, and temperature sensor are demonstrated.

4.
ACS Appl Mater Interfaces ; 11(50): 47596-47605, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31738853

ABSTRACT

Asphaltene deposition in petroleum refineries is known to be problematic as it reduces efficiency and may lead to structural failure or production downtime. Though several successful approaches have been utilized to limit deposition through the addition of dispersants and inhibitors to petroleum, these methods require constant intervention and are often expensive. In this study, we demonstrate an innovative technique to engineer the surface chemistry of pipeline steels to inhibit asphaltene deposition. Pack aluminization, a standard industrial-scale chemical vapor deposition process, is employed at a low temperature of 600 °C to aluminize API 5L X65 high strength pipe steel substrates. The results showed deposit-free steel surfaces after high-pressure and high-temperature fouling experiments. The improvement is attributed to the formation of an aluminide intermetallic phase of Fe2Al5, which changes the native oxide chemistry to favor alumina over hematite. The continuous passivating oxide scale, acting as a protective barrier, mitigates asphaltene deposition and sulfidic corrosion. Because this process is based on alloying the surface of the steel and is not a coating with a weakly adhered interface, it is not prone to delamination, and it can be re-formed when damaged within the aluminized region. The combination of low-cost processing and improved antifouling characteristics makes surface chemistry modification of steel a promising preventative approach against asphaltene deposition.

5.
ACS Appl Mater Interfaces ; 11(4): 4364-4372, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30615419

ABSTRACT

Infiltration of a molten metal phase into a ceramic scaffold to manufacture metal-ceramic composites often involves high temperature, high pressure, and expensive processes. Low-cost processes for fabrication of metal-ceramic composites can substantially increase their applications in various industries. In this article, electroplating (electrodeposition) as a low-cost, room-temperature process is demonstrated for infiltration of metal (copper) into a lamellar ceramic (alumina) scaffold. Estimation shows that this is a low energy consumption process. Characterization of mechanical properties showed that metal infiltration enhanced the flexural modulus and strength by more than 50% and 140%, respectively, compared to the pure lamellar ceramic. More importantly, metal infiltration remarkably enhanced the crack initiation and crack growth resistance by more than 230% and 510% compared to the lamellar ceramic. The electrodeposition process for development of metal-ceramic composites can be extended to other metals and alloys that can be electrochemically deposited, as a low-cost and versatile process.

6.
RSC Adv ; 8(38): 21214-21223, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-35539905

ABSTRACT

Scalable, low-density and flexible aerogels offer a unique combination of excellent mechanical properties and scalable manufacturability. Herein, we report the fabrication of a family of low-density, ambient-dried and hydrophobic poly(isocyanurate-urethane) aerogels derived from a triisocyanate precursor. The bulk densities ranged from 0.28 to 0.37 g cm-3 with porosities above 70% v/v. The aerogels exhibit a highly stretchable behavior with a rapid increase in the Young's modulus with bulk density (slope of log-log plot > 6.0). In addition, the aerogels are very compressible (more than 80% compressive strain) with high shape recovery rate (more than 80% recovery in 30 s). Under tension even at high strains (e.g., more than 100% tensile strain), the aerogels at lower densities do not display a significant lateral contraction and have a Poisson's ratio of only 0.22. Under dynamic conditions, the properties (e.g., complex moduli and dynamic stress-strain curves) are highly frequency- and rate-dependent, particularly in the Hopkinson pressure bar experiment where in comparison with quasi-static compression results, the properties such as mechanical strength were three orders of magnitude stiffer. The attained outcome of this work supports a basis on the understanding of the fundamental mechanical behavior of a scalable organic aerogel with potential in engineering applications including damping, energy absorption, and substrates for flexible devices.

7.
Nano Lett ; 18(1): 208-214, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29257699

ABSTRACT

Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.

8.
Adv Mater ; 30(4)2018 Jan.
Article in English | MEDLINE | ID: mdl-29215174

ABSTRACT

Nanotwinned (nt)-metals exhibit superior mechanical and electrical properties compared to their coarse-grained and nanograined counterparts. nt-metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt-metals. Microscale 3D printing of nt-Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L-PED). The 3D printed nt-Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L-PED process enables direct 3D printing of layer-by-layer and complex 3D microscale nt-Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...