Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 103(6): 780-4, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7528240

ABSTRACT

The cornified envelope, a structure unique to keratinocytes, is a hallmark of their terminal differentiation and plays an important role in epidermal barrier function. Cornified envelope is formed through the action of a membrane-associated transglutaminase, which covalently cross-links protein precursors into a highly insoluble network at the inner leaflet of the plasma membrane in granular keratinocytes and stratum corneum. Initial studies, using dansylcadaverine for enzyme-directed labeling of acyl-acceptor transglutaminase substrates in mouse epidermal homogenates identified a prominent 60-kDa substrate. Specific antibodies raised to this protein stained the cytoplasm of suprabasal cells of stratified squamous epithelia, whereas simple epithelia and nonepithelial tissues showed no staining. Immunoscreening of a cDNA expression library from adult mouse skin identified 18 positive clones. DNA sequencing of the largest clone (which hybridized to a keratinocyte-specific transcript of 2.0 kb) showed greater than 99.5% homology with mouse keratin 10. Immunoelectron microscopy using anti-S60 and another antibody to keratin 10 showed specific binding to cornified envelope associated filamentous structures. Proteolytic fragments of purified cornified envelope from mouse epidermis showed reactivity to anti-S60. These data show that mouse keratin 10 is tightly bound to cornified envelope and may be a cross-linked substrate. The tight binding of keratin filaments and CE suggests a mechanism by which they might interact to enhance the structural integrity of the stratum corneum.


Subject(s)
Intermediate Filaments/metabolism , Keratinocytes/chemistry , Keratins/metabolism , Animals , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , Intermediate Filaments/chemistry , Mice , Protein Binding , Substrate Specificity , Transglutaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...