Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 100(3-1): 032129, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639983

ABSTRACT

We consider a quantum engine driven by repeated weak interactions with a heat bath of identical three-level atoms. This model was first introduced by Scully et al. [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], who showed that coherence between the energy-degenerate ground states serves as a thermodynamic resource that allows operation of a thermal cycle with a coherence-dependent thermalization temperature. We consider a similar engine out of the quasistatic limit and find that the ground-state coherence also determines the rate of thermalization, therefore increasing the output power and the engine efficiency only when the thermalization temperature is reduced; revealing a more nuanced perspective of coherence as a resource. This allows us to optimize the output power by adjusting the coherence and relative stroke durations.

2.
Nat Commun ; 9(1): 4606, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389924

ABSTRACT

The use of quantum resources can provide measurement precision beyond the shot-noise limit (SNL). The task of ab initio optical phase measurement-the estimation of a completely unknown phase-has been experimentally demonstrated with precision beyond the SNL, and even scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor. However, existing approaches have not been able-even in principle-to achieve the best possible precision, saturating the HL exactly. Here we demonstrate a scheme to achieve true HL phase measurement, using a combination of three techniques: entanglement, multiple samplings of the phase shift, and adaptive measurement. Our experimental demonstration of the scheme uses two photonic qubits, one double passed, so that, for a successful coincidence detection, the number of photon-passes is N = 3. We achieve a precision that is within 4% of the HL. This scheme can be extended to higher N and other physical systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...