Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Clin. transl. oncol. (Print) ; 26(2): 311-325, feb. 2024. ilus, tab
Article in English | IBECS | ID: ibc-230178

ABSTRACT

Glioblastoma (GBM) constitutes the most common primary brain tumor in adults. The challenges in GBM therapeutics have shed light on zebrafish used as a promising animal model for preclinical GBM xenograft studies without a standardized methodology. This systematic review aims to summarize the advances in zebrafish GBM xenografting, compare research protocols to pinpoint advantages and underlying limitations, and designate the predominant xenografting parameters. Based on the PRISMA checklist, we systematically searched PubMed, Scopus, and ZFIN using the keywords “glioblastoma,” “xenotransplantation,” and “zebrafish” for papers published from 2005 to 2022, available in English. 46 articles meeting the review criteria were examined for the zebrafish strain, cancer cell line, cell labeling technique, injected cell number, time and site of injection, and maintenance temperature. Our review designated that AB wild-type zebrafish, Casper transparent mutants, transgenic Tg(fli1:EGFP), or crossbreeding of these predominate among the zebrafish strains. Orthotopic transplantation is more commonly employed. A number of 50–100 cells injected at 48 h post-fertilization in high density and low infusion volume is considered as an effective xenografting approach. U87 cells are used for GBM angiogenesis studies, U251 for GBM proliferation studies, and patient-derived xenograft (PDX) to achieve clinical relevance. Gradual acclimatization to 32–33 °C can partly address the temperature differential between the zebrafish and the GBM cells. Zebrafish xenograft models constitute valuable tools for preclinical studies with clinical relevance regarding PDX. The GBM xenografting research requires modification based on the objective of each research team. Automation and further optimization of the protocol parameters could scale up the anticancer drug trials (AU)


Subject(s)
Humans , Animals , Brain Neoplasms/pathology , Glioblastoma/pathology , Cell Line, Tumor , Models, Animal , Transplantation, Heterologous , Zebrafish
2.
Stem Cells Dev ; 33(5-6): 117-127, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164117

ABSTRACT

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSC-EVs) have been proposed as a novel therapeutic tool with numerous clinically related advantages. However, their characteristics and functionality are dependent on the source of MSCs and their cell culture conditions. Fetal bovine serum (FBS) provides a source of nutrients and growth factors to the cultured cells. However, certain pitfalls are associated with its supplementation to the culture media, including introduction of exogenous FBS-derived EVs to the cultured cells. Thus, recent practices recommend utilization of serum-free (SF) media or EV-depleted FBS. On the contrary, evidence suggests that the immunomodulatory ability of MSC-EVs can be improved by exposing MSCs to an inflammatory (IF) environment. The objective of this study was to (1) compare EVs isolated from two tissue sources of MSCs that were exposed to various cell culture conditions and (2) to evaluate their anti-inflammatory effects. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and umbilical cord-derived mesenchymal stromal cells (UC-MSCs) were exposed to either a SF media environment, an IF environment, or media supplemented with 5% EV-depleted FBS. Following isolation of MSC-EVs, the isolates were quantified and evaluated for particle size, phenotypic changes, and their immunomodulatory potential. A statistically significant difference was not identified on the yield and protein concentration of different isolates of EVs from BM-MSCs and UC-MSCs, and all isolates had a circular appearance as evaluated via electron microscopy. A significant difference was identified on the phenotype of different EVs isolates; however, all isolates expressed classical markers such as CD9, CD63, and CD81. The addition of BM-derived MSC-EVs from FBS environment or UC-derived MSC-EVs from IF environment resulted in statistically significant downregulation of IL-6 messenger RNA (mRNA) in stimulated leukocytes. This study confirms that EVs produced by different MSC sources and cell culture conditions affect their phenotype and their immunomodulatory capacities.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Bone Marrow , Cell Culture Techniques , Extracellular Vesicles/metabolism , Cells, Cultured , Umbilical Cord , Culture Media, Serum-Free/pharmacology , Bone Marrow Cells
3.
Clin Transl Oncol ; 26(2): 311-325, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37400666

ABSTRACT

Glioblastoma (GBM) constitutes the most common primary brain tumor in adults. The challenges in GBM therapeutics have shed light on zebrafish used as a promising animal model for preclinical GBM xenograft studies without a standardized methodology. This systematic review aims to summarize the advances in zebrafish GBM xenografting, compare research protocols to pinpoint advantages and underlying limitations, and designate the predominant xenografting parameters. Based on the PRISMA checklist, we systematically searched PubMed, Scopus, and ZFIN using the keywords "glioblastoma," "xenotransplantation," and "zebrafish" for papers published from 2005 to 2022, available in English. 46 articles meeting the review criteria were examined for the zebrafish strain, cancer cell line, cell labeling technique, injected cell number, time and site of injection, and maintenance temperature. Our review designated that AB wild-type zebrafish, Casper transparent mutants, transgenic Tg(fli1:EGFP), or crossbreeding of these predominate among the zebrafish strains. Orthotopic transplantation is more commonly employed. A number of 50-100 cells injected at 48 h post-fertilization in high density and low infusion volume is considered as an effective xenografting approach. U87 cells are used for GBM angiogenesis studies, U251 for GBM proliferation studies, and patient-derived xenograft (PDX) to achieve clinical relevance. Gradual acclimatization to 32-33 °C can partly address the temperature differential between the zebrafish and the GBM cells. Zebrafish xenograft models constitute valuable tools for preclinical studies with clinical relevance regarding PDX. The GBM xenografting research requires modification based on the objective of each research team. Automation and further optimization of the protocol parameters could scale up the anticancer drug trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Humans , Glioblastoma/pathology , Transplantation, Heterologous , Zebrafish , Heterografts , Brain Neoplasms/pathology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...