Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Ther ; 16(Supplement): S201-S205, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33380678

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) is one of the major causes of morbidity and mortality in the world. Numerous genomic and proteomic studies have been carried out across the globe to understand cancer biology related to HCC. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) is also known as cluster of differentiation 209. The current study was designed to investigate the association of mutation in DC-SIGN promoter region in HCC patients and healthy controls and to analyze the association of these mutations as a risk factor for HCC development from India. MATERIALS AND METHODS: total of 40 cases of HCC and 40 healthy controls without any underlying liver diseases were included in the study. A total of 5 ml of peripheral blood samples were collected, and genomic DNA was isolated using phenol-chloroform method. Polymerase chain reaction amplification was carried out for DC gene, and the amplicons were subjected to direct sequencing (Macrogen, Korea). Mutations were analyzed comparing these sequences with those published sequences from the database using bioinformatics software. RESULTS: A total of eight point mutations were observed in the HCC cases. The natures of mutation observed were deletion, transition, and transversion. All mutations were located in the 19th chromosome at nine different loci (51,079, 51,493, 51,561, 51,124, 51,125, 51,127, 51,169, 51,170, and 51,172). CONCLUSION: Mutation in the promoter region of the DC-SIGN gene may be a possible risk factor for the development of HCC in India. The findings of the study reveal the possible role of these mutants with HCC, and future large-scale prospective studies will further validate the findings of the current study.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , Cell Adhesion Molecules/genetics , Lectins, C-Type/genetics , Liver Neoplasms/pathology , Mutation , Receptors, Cell Surface/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/genetics , Case-Control Studies , Follow-Up Studies , Humans , India/epidemiology , Liver Neoplasms/epidemiology , Liver Neoplasms/genetics , Prognosis
2.
Appl Biochem Biotechnol ; 178(3): 513-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26490377

ABSTRACT

Insulin plant (Costus pictus D. Don) is an economically important medicinal plant for the content of its high value secondary metabolites, bioactive compounds, and remarkable flowering features. MicroRNAs are a class of short (∼21 nucleotides), endogenous, noncoding RNA molecules that play a vital role in regulating gene expression. Here, we used a computer-based homology approach to identify conserved miRNAs in Transcribed Sequence Assemblies (TSA) of C. pictus. It led us to identify 42 miRNAs of 13 different families in C. pictus for the first time. Using quantitative polymerase chain reaction (qPCR) assays, we further confirmed the expression of 8 miRNAs (miR394, miR159b, miR166k, miR172, miR159f, miR166, miR144, and miR858) in young and mature leaf tissues. A total of 109 potential target genes of the identified miRNAs were subsequently predicted in rice (Oryza sativa L.) genome. The target genes encode transcription factors, enzymes, and various functional proteins involved in the regulation of several metabolic pathways. The findings in the present study lay the foundation for further research on miRNAs and miRNA-mediated gene regulation in this important medicinal plant.


Subject(s)
Costus/genetics , MicroRNAs/genetics , Gene Expression , Plant Leaves/genetics
3.
J Environ Biol ; 36(4): 875-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26364464

ABSTRACT

Drought is the major yield-limiting abiotic factor of tea cultivation. In the present study, influence of drought stress on cellular ultrastructure and antioxidants was studied drought-tolerant (TV-23) and -sensitive (S.3/A3) tea cultivars by imposing drought stress for 21 days. Drought stress led to considerable structural alterations in mitochondria, chloroplast and vacuole. Lesser membrane integrity and higher structural damage was observed in S.3/A3. Chlorophyll a, chl-b and carotenoids content in leaves decreased in each cultivar; however, the decrement was more brisk in S.3/A3. Proline, total soluble sugar, ascorbic acid and abscisic acid were elevated in TV-23 whereas hydrogen peroxide, superoxide anion, lipid peroxidation and electrolyte leakage increased rapidly in S.3/A3. Starch content decreased both in leaves and roots of each cultivar and was more pronounced in roots of TV-23. Under drought, enhanced activities of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase were recorded in both roots and leaves of each cultivar, but the rate of enhancement was more in TV-23. This indicated that tolerant cultivar exhibited higher antioxidant capacity and a stronger protective mechanism such that their ultrastructural integrity was better maintained during exposure to drought stress.


Subject(s)
Antioxidants/metabolism , Camellia sinensis/metabolism , Camellia sinensis/ultrastructure , Water/physiology , Droughts , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Roots/metabolism , Plant Roots/ultrastructure , Species Specificity
4.
Biometals ; 25(6): 1141-54, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22850809

ABSTRACT

Tea [Camellia sinensis (L.) O. Kuntze] is an aluminum (Al) hyperaccumulator plant and is commercially important due to its high content of antioxidants. Although Al induced growth is well-known for the plants growing in acid soil, yet the cause underlying the stimulatory effect of Al has not been fully understood. To investigate the possible role of Al in growth induction, we studied morphological, physiological as well as biochemical changes of tea plant under different Al concentrations (0-4,000 µM). In hydroponics, Al (15 µM), enhanced shoot and root growth, but at higher concentrations, it caused oxidative damage which culminated in a cascade of biochemical changes, Al content increased concurrently with the maturity of the leaf as well as stem tissues than their younger counterparts. Hematoxylin staining indicated that Al accumulation started after 6 h of exposure in the tips of young roots and accumulation was dose dependent. The physiological parameters such as pigments, photosynthetic rate, transpiration and stomatal conductance were declined due to Al toxicity. Alteration in activated oxygen metabolism was also evidenced by increasing lipid peroxidation, membrane injury, evolution of superoxide anions and accumulation of H(2)O(2). Contents of phenols initially exhibited an acceleration which gradually plummeted at higher levels whereas total sugar and starch contents decimated beyond 15 µM of Al concentration. Activities of antioxidant defense enzymes were increased with the elevated concentration of Al. Expression of citrate synthase gene was up-regulated in the mature leaves, young as well as old roots simultaneously with increased concentration of Al in those parts; indicating the formation of Al-citrate complex. These results cooperatively specified that Al concentration at lower level promoted growth but turned out to be a stressor at elevated stages indicating the sensitivity of the cultivar (T-78) to Al.


Subject(s)
Aluminum/pharmacology , Antioxidants/metabolism , Camellia sinensis/drug effects , Oxidative Stress/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Seedlings/drug effects , Tea/drug effects , Aluminum/metabolism , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Citric Acid/metabolism , Dose-Response Relationship, Drug , Plant Leaves/enzymology , Plant Leaves/metabolism , Tea/growth & development , Tea/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...