Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(2): 1349-1358, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36595558

ABSTRACT

Chemical bonding present in crystalline solids has a significant impact on how heat moves through a lattice, and with the right chemical tuning, one can achieve extremely low thermal conductivity. The desire for intrinsically low lattice thermal conductivity (κlat) has gained widespread attention in thermoelectrics, in refractories, and nowadays in photovoltaics and optoelectronics. Here we have synthesized a high-quality crystalline ingot of cubic metal halide CuBiI4 and explored its chemical bonding and thermal transport properties. It exhibits an intrinsically ultralow κlat of ∼0.34-0.28 W m-1 K-1 in the temperature range 4-423 K with an Umklapp crystalline peak of 1.82 W m-1 K-1 at 20 K, which is surprisingly lower than other copper-based halide or chalcogenide materials. The crystal orbital Hamilton population analysis shows that antibonding states generated just below the Fermi level (Ef), which arise from robust copper 3d and iodine 5p interactions, cause copper-iodide bond weakening, which leads to reduction of the elastic moduli and softens the lattice, finally to produce extremely low κlat in CuBiI4. The chemical bonding hierarchy with mixed covalent and ionic interactions present in the complex crystal structure generates significant lattice anharmonicity and a low participation ratio in low-lying optical phonon modes originating mostly from localized copper-iodide bond vibrations. We have obtained experimental evidence of these low-lying modes by low-temperature specific heat capacity measurement as well as Raman spectroscopy. The presence of strong p-d antibonding interactions between copper and iodine leads to anharmonic soft crystal lattice which gives rise to low-energy localized optical phonon bands, suppressing the heat-carrying acoustic phonons to steer intrinsically ultralow κlat in CuBiI4.

2.
Chem Sci ; 13(34): 9952-9959, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128238

ABSTRACT

Self-trapping of excitons (STE) and concomitant useful broadband emission in low-dimensional metal halides occur due to strong electron-phonon coupling, which exhibit potential applications in optoelectronics and solid-state lighting. Lattice softness and high anharmonicity in the low-dimensional structure can lead to transient structural distortion upon photoexcitation that should promote the spatial localization or trapping of charge carriers, which is essential for STE. Herein, we report the ligand-assisted reprecipitation synthesis of ultrathin (∼3.5 nm) two-dimensional (2D) metal halide, RbPb2Br5 nanoplates (NPLs), which demonstrate highly Stokes shifted and broadband emission covering most parts of the visible to near IR range (500-850 nm) with a long-lived photoluminescence (PL) lifetime. The excitation wavelength independent emission and emission wavelength independent excitation spectra along with the analogous PL decay kinetics of bulk and NPLs suggest the intrinsic nature of broadband emission. The experimental low sound velocity (∼1090 m s-1) and associated low bulk and shear moduli (10.10 and 5.51 GPa, respectively) indicate the large anharmonicity and significantly soft lattice structure, which trigger the broadband STE emission in 2D NPLs of RbPb2Br5. Strong electron-longitudinal optical (LO) phonon coupling results in broadband STE emission in 2D RbPb2Br5 NPLs.

3.
Inorg Chem ; 60(16): 12226-12236, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34339187

ABSTRACT

The pseudobinary MnxNi2Zn11-x γ-brass-type phases at low Mn dopant levels (x = 0.1-0.5) were investigated. Crystal structures were determined for the two loading compositions of x = 0.3 and 0.5. The structures were solved in the cubic space group of I43m and are described in close analogy to the Ni2Zn11 parent γ-brass that is based on the 26-atom cluster, consisting of inner tetrahedron (IT), outer tetrahedron (OT), octahedron (OH), and cuboctahedron (CO). The refined site occupancies of the MnxNi2Zn11-x (x = 0.3, 0.5) reveal that the cluster center, which is empty in the Ni2Zn11, shows a partial occupation by Zn, with a partial depletion of Zn at the IT sites. The OH sites show a mixed Zn/Mn occupation. The OT and CO sites remain intact with respect to Ni2Zn11. Magnetic properties were studied for the Mn0.3Ni2Zn10.7 composition. The temperature-dependent zero-field-cooled and field-cooled magnetization, the ac susceptibility, the M(H) hysteresis curves, the thermoremanent magnetization, and the memory effect demonstrate typical broken-ergodicity phenomena of a magnetically frustrated spin system below the spin freezing temperature Tf ≈ 16 K. The Mn0.3Ni2Zn10.7 γ-brass phase classifies as a spin glass, originating predominantly from the random distribution of diluted Mn moments on the octahedral partial structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...