Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1496, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233479

ABSTRACT

Plant image analysis is a significant tool for plant phenotyping. Image analysis has been used to assess plant trails, forecast plant growth, and offer geographical information about images. The area segmentation and counting of the leaf is a major component of plant phenotyping, which can be used to measure the growth of the plant. Therefore, this paper developed a convolutional neural network-based leaf counting model called LC-Net. The original plant image and segmented leaf parts are fed as input because the segmented leaf part provides additional information to the proposed LC-Net. The well-known SegNet model has been utilised to obtain segmented leaf parts because it outperforms four other popular Convolutional Neural Network (CNN) models, namely DeepLab V3+, Fast FCN with Pyramid Scene Parsing (PSP), U-Net, and Refine Net. The proposed LC-Net is compared to the other recent CNN-based leaf counting models over the combined Computer Vision Problems in Plant Phenotyping (CVPPP) and KOMATSUNA datasets. The subjective and numerical evaluations of the experimental results demonstrate the superiority of the LC-Net to other tested models.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Geography , Plant Development , Plant Leaves
2.
Arch Comput Methods Eng ; 30(5): 3379-3404, 2023.
Article in English | MEDLINE | ID: mdl-37260909

ABSTRACT

Arithmetic Optimization Algorithm (AOA) is a recently developed population-based nature-inspired optimization algorithm (NIOA). AOA is designed under the inspiration of the distribution behavior of the main arithmetic operators in mathematics and hence, it also belongs to mathematics-inspired optimization algorithm (MIOA). MIOA is a powerful subset of NIOA and AOA is a proficient member of it. AOA is published in early 2021 and got a massive recognition from research fraternity due to its superior efficacy in different optimization fields. Therefore, this study presents an up-to-date survey on AOA, its variants, and applications.

3.
Arch Comput Methods Eng ; : 1-28, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37359742

ABSTRACT

Aquila Optimizer (AO) is a well-known nature-inspired optimization algorithm (NIOA) that was created in 2021 based on the prey grabbing behavior of Aquila. AO is a population-based NIOA that has demonstrated its effectiveness in the field of complex and nonlinear optimization in a short period of time. As a result, the purpose of this study is to provide an updated survey on the topic. This survey accurately reports on the designed enhanced AO variations and their applications. In order to properly assess AO, a rigorous comparison between AO and its peer NIOAs is conducted over mathematical benchmark functions. The experimental results show the AO provides competitive outcomes.

4.
Arch Comput Methods Eng ; 30(5): 3133-3172, 2023.
Article in English | MEDLINE | ID: mdl-36855410

ABSTRACT

Marine Predators Algorithm (MPA) is the existing population-based meta-heuristic algorithms that falls under the category of Nature-Inspired Optimization Algorithm (NIOA) enthused by the foraging actions of the marine predators that principally pursues Levy or Brownian approach as its foraging strategy. Furthermore, it employs the optimal encounter rate stratagem involving both the predator as well as prey. Since its introduction by Faramarzi in the year 2020, MPA has gained enormous popularity and has been employed in numerous application areas ranging from Mathematical and Engineering Optimization problems to Fog Computing to Image Processing to Photovoltaic System to Wind-Solar Generation System for resolving continuous optimization problems. Such huge interest from the research fraternity or the massive recognition of MPA is due to several factors such as its simplicity, ease of application, realistic execution time, superior convergence acceleration rate, soaring effectiveness, its ability to unravel continuous, multi-objective and binary problems when compared with other renowned optimization algorithms existing in the literature. This paper offers a detailed summary of the Marine Predators Algorithm (MPA) and its variants. Furthermore, the applications of MPA in a number of spheres such as Image processing, classification, electrical power system, Photovoltaic models, structural damage detection, distribution networks, engineering applications, Task Scheduling, optimization problems etc., are illustrated. To conclude, the paper highlights and thereby advocates few of the potential future research directions for MPA.

5.
Arch Comput Methods Eng ; 30(4): 2543-2578, 2023.
Article in English | MEDLINE | ID: mdl-36624874

ABSTRACT

The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimization algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm (AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimization Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis entropy rather than with t-entropy in both color standard images and medical pathology images.

6.
Arch Comput Methods Eng ; 29(7): 5313-5352, 2022.
Article in English | MEDLINE | ID: mdl-35694187

ABSTRACT

Humans take immense pride in their ability to be unpredictably intelligent and despite huge advances in science over the past century; our understanding about human brain is still far from complete. In general, human being acquire the high echelon of intelligence with the ability to understand, reason, recognize, learn, innovate, retain information, make decision, communicate and further solve problem. Thereby, integrating the intelligence of human to develop the optimization technique using the human problem-solving ability would definitely take the scenario to next level thus promising an affluent solution to the real world optimization issues. However, human behavior and evolution empowers human to progress or acclimatize with their environments at rates that exceed that of other nature based evolution namely swarm, bio-inspired, plant-based or physics-chemistry based thus commencing yet additional detachment of Nature-Inspired Optimization Algorithm (NIOA) i.e. Human-Inspired Optimization Algorithms (HIOAs). Announcing new meta-heuristic optimization algorithms are at all times a welcome step in the research field provided it intends to address problems effectively and quickly. The family of HIOA is expanding rapidly making it difficult for the researcher to select the appropriate HIOA; moreover, in order to map the problems alongside HIOA, it requires proper understanding of the theoretical fundamental, major rules governing HIOAs as well as common structure of HIOAs. Common challenges and open research issues are yet another important concern in HIOA that needs to be addressed carefully. With this in mind, our work distinguishes HIOAs on the basis of a range of criteria and discusses the building blocks of various algorithms to achieve aforementioned objectives. Further, this paper intends to deliver an acquainted survey and analysis associated with modern compartment of NIOA engineered upon the perception of human behavior and intelligence i.e. Human-Inspired Optimization Algorithms (HIOAs) stressing on its theoretical foundations, applications, open research issues and their implications on color satellite image segmentation to further develop Multi-Level Thresholding (MLT) models utilizing Tsallis and t-entropy as objective functions to judge their efficacy.

7.
Evol Syst (Berl) ; 13(6): 889-945, 2022.
Article in English | MEDLINE | ID: mdl-37520044

ABSTRACT

Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.

SELECTION OF CITATIONS
SEARCH DETAIL
...