Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(21): 8160-8168, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35587113

ABSTRACT

Our modern civilization is currently standing at a crossroads due to excessive emission of anthropogenic CO2 leading to adverse climate change effects. Hence, a proper CO2 management strategy, including appropriate CO2 capture, utilization, and storage (CCUS), has become a prime concern globally. On the other hand, C1 chemicals such as methanol (CH3OH) and formic acid (HCOOH) have emerged as leading materials for a wide range of applications in various industries, including chemical, biochemical, pharmaceutical, agrochemical, and even energy sectors. Hence, there is a concerted effort to bridge the gap between CO2 management and methanol/formic acid production by employing CO2 as a C1-synthon. CO2 hydrogenation to methanol and formic acid has emerged as one of the primary routes for directly converting CO2 to a copious amount of methanol and formate, which is typically catalyzed by transition metal complexes. In this frontier article, we have primarily discussed the abundant first-row transition metal-driven hydrogenation reaction that has exhibited a significant surge in activity over the past few years. We have also highlighted the potential future direction of the research while incorporating a comparative analysis for the competitive second and third-row transition metal-based hydrogenation.


Subject(s)
Coordination Complexes , Transition Elements , Carbon Dioxide/chemistry , Catalysis , Coordination Complexes/chemistry , Hydrogenation , Methanol
SELECTION OF CITATIONS
SEARCH DETAIL
...