Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38594622

ABSTRACT

With the advent of the modern era, there is a huge demand for memristor-based neuromorphic computing hardware to overcome the von Neumann bottleneck in traditional computers. Here, we have prepared two-dimensional titanium carbide (Ti3C2Tx) MXene following the conventional HF etching technique in solution. After confirmation of Ti3C2Tx properties by Raman scattering and crystallinity measurements, high-quality thin-film deposition is realized using an immiscible liquid-liquid interfacial growth technique. Following this, the memristor is fabricated by sandwiching a Ti3C2Tx layer with a thickness of 70 nm between two electrodes. Subsequently, current-voltage (I-V) characteristics are measured, revealing a nonvolatile resistive switching property characterized by a swift switching speed of 30 ns and an impressive current On/Off ratio of approximately 103. Furthermore, it exhibits endurance through 500 cycles and retains the states for at least 1 × 104 s without observable degradation. Additionally, it maintains a current On/Off ratio of about 102 while consuming only femtojoules (fJ) of electrical energy per reading. Systematic I-V results and conductive AFM-based current mapping image analysis are converged to support the electroforming mediated filamentary conduction mechanism. Furthermore, our Ti3C2Tx memristor was found to be truly versatile as an all-in-one device for demonstrating edge computation, logic gate operation, and classical conditioning of learning by the brain in Psychology.

2.
ACS Nano ; 18(1): 1137-1148, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38127715

ABSTRACT

Memristors have gained significant attention recently due to their unique ability to exhibit functionalities for brain-inspired neuromorphic computing. Here, we demonstrate a high-performance multifunctional memristor using a thin film of liquid-phase exfoliated (LPE) 2D MoS2 pinched between two electrodes. Nanoscale inspection of a solution-processed MoS2 thin film using scanning electron and scanning probe microscopies revealed the high-quality and defect-free nature. Systematic current-voltage (I-V) characterizations depict a facile, nonvolatile resistive switching behavior of our 2D MoS2 thin film device with a current On/Off ratio of 103 and energy cost of only a few picojoules. Excellent performance metrics, including at least 103 cycle endurance, 104 s retention, and switching speed down to a few nanoseconds, reflect robust high-performance data storage capability. Charge carriers trapping and detrapping at the sulfur vacancy defect sites in MoS2 nanosheets mainly display the resistive switching property, supported by the impedance analysis and theoretical fitting results. Multifunctionality is leveraged through implementing two-input logic gate operations, edge computation, and crucial adaptive learning via a Pavlov's dogs experiment. Overall, our solution-processed MoS2 memristor has the potential for tremendous future opportunities in integrated circuits and different computing paradigms, including energy-efficient neuromorphic computing hardware in artificial intelligence.

3.
J Am Chem Soc ; 144(44): 20442-20451, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36282681

ABSTRACT

Herein we report a ligand-centered redox-controlled strategy for the synthesis of an unusual binuclear diradical cobalt(III) complex, [Co2III(L•3-)2] (1), featuring two three-electron reduced trianionic monoradical 2,9-bis(phenyldiazo)-1,10-phenanthroline ligands (L•3-) and two intermediate-spin cobalt(III) centers having a Co-Co bond. Controlled ligand-centered oxidation of 1 afforded two mononuclear complexes, [CoII(L•-)(L0)]+ ([3])+ and [CoII(L0)2]2+ ([2]2+), which upon further ligand-centered reduction yielded a di-azo-anion diradical complex, [CoII(L•-)2] (4). In complex 1, two three-electron reduced di-azo-anion monoradical ligands (L•3-) bridge two intermediate Co(III) centers at a distance of 2.387(2) Å, while upon oxidation, one of the coordinating azo-arms of L becomes pendent, and in complexes [2]2+, [3]+, and 4, two tetradentate ligands coordinate a single Co(II) center in a tridentate meridional fashion with one uncoordinated azo-arm from each of the ligands. In the presence of reducing agents, the monomers [2]2+, [3]+, and 4 undergo ligand-centered reduction to form azo-anion radicals, and the otherwise pendent azo-arms in the presence of cobalt(II)-salts like Co(ClO4)2 or CoCl2 bind the second Co(II)-ion; further internal electron transfer from the cobalt center to the arylazo backbone produces the binuclear complex 1. Spectroscopic analysis, DFT studies, and control experiments were performed to understand the electronic structures and the ligand-centered redox-controlled interconversion. The application of complex 1 as a molecular memory device (memristor) was also explored. Complex 1 showed encouraging results as a memristor with a current ON/OFF ratio > 104 and is highly promising for resistive RAM/ROM applications.

4.
Sci Rep ; 12(1): 3808, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264605

ABSTRACT

Here, various synaptic functions and neural network simulation based pattern-recognition using novel, solution-processed organic memtransistors (memTs) with an unconventional redox-gating mechanism are demonstrated. Our synaptic memT device using conjugated polymer thin-film and redox-active solid electrolyte as the gate dielectric can be routinely operated at gate voltages (VGS) below - 1.5 V, subthreshold-swings (S) smaller than 120 mV/dec, and ON/OFF current ratio larger than 108. Large hysteresis in transfer curves depicts the signature of non-volatile resistive switching (RS) property with ON/OFF ratio as high as 105. In addition, our memT device also shows many synaptic functions, including the availability of many conducting-states (> 500) that are used for efficient pattern recognition using the simplest neural network simulation model with training and test accuracy higher than 90%. Overall, the presented approach opens a new and promising way to fabricate high-performance artificial synapses and their arrays for the implementation of hardware-oriented neural network.


Subject(s)
Neural Networks, Computer , Synapses , Computer Simulation , Computers , Electrolytes
5.
Nanotechnology ; 32(35)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34038892

ABSTRACT

Here, we report robust and highly reproducible nonvolatile resistive switching (RS) devices with artificial synaptic functionalities utilizing redox-exfoliated few-layered 2H-MoS2nanoflakes. Advantageous polar solvent compatibility of 2D MoS2from this method were utilized to fabricate thin film devices very easily and cost-effectively using polystyrene as matrix. Prominent RS property of polystyrene thin film devices with varying MoS2concentrations strongly favors electroforming-free operation. The conduction band position of 2D MoS2nanosheet in combination with the work functions of chosen electrodes looks alleviating to switch the current from low to high at a suitable positive bias voltage. We further confirmed the mechanism of charge transport through fitting the results with theoretical models, say injection-dominated Schottky emission model for low-conducting states and space-charge-limited current mechanism for the high-conducting state. Interestingly, a relatively high current On/Off ratio 102was recorded during the pump-probe testing to show resistive random-access memory (ReRAM) application. Finally, artificial synaptic functionalities- the building blocks of neuromorphic computing architectures is also illustrated by considering the robust RS property and ReRAM application.

6.
Chem Commun (Camb) ; 57(23): 2935-2938, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33621307

ABSTRACT

We report the reversible polymorphic phase transition of [Ni6(PET)12] (PET = phenylethanethiol) and its effect on the conductivity. This cluster's self-assembly leads to two polymorphic structures with distinct conductivity, caused by variation of the non-covalent SS interactions. These results enlighten the effect of non-covalent interactions on conductivity.

7.
Nanotechnology ; 31(25): 255705, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32168504

ABSTRACT

Anodically oxidized, ultra-thin (d < 10 nm) aluminium films emerge as the dielectric of choice for low-cost thin film capacitors (TFCs), thin film transistors (TFTs), and bio- and chemical sensors. In this work, the dielectric properties of ultra-thin aluminium oxide films grown by anodization in aqueous solutions of citric acid (CA) have been studied. It is observed that the electrolyte strength variation from 0.1 mM to 1000 mM has virtually no influence on the chemical composition, surface morphology and the dielectric properties of the fabricated alumina films. The anodized films are very smooth having RMS area roughness around ∼5 Å. This was further improved after deposition of n-octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) to ∼4 Å. Also, the XRD and elemental analysis using EDS and XPS unambiguously confirms that the obtained oxide films are amorphous, stoichiometric Al2O3 without any carbon contamination. The fabricated Al/Al2O3/Al MIM capacitors show almost ideal capacitor characteristics from 10 Hz to 100 kHz. It has been found that the OTS coating does not only improve the capacitor frequency response further but also reduces the leakage current through the dielectric layer by passivating reactive dangling bonds on the oxide surface. As a result of the favourable properties of the anodized Al2O3/OTS films, high-performance, low threshold voltage organic thin film transistors (OTFTs) operating below 1 V are successfully demonstrated.

8.
RSC Adv ; 10(42): 24882-24892, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-35517436

ABSTRACT

Atmospheric processing of organic solar cells (OSCs) has already emerged and will be a challenge to emulate with the existing market leaders in terms of overall cost reduction and large scale production. However, the presence of defects in the active layer of OSC needs to be identified effectively to minimize the performance degradation involved. In this work, conventional bulk-heterojunction (BHJ) OSCs are fabricated entirely in air having an efficiency (η) up to 4.0% using P3HT and PC61BM as the donor and acceptor, respectively. The devices have exhibited reasonable degradation of performance parameters with aging time and uninterrupted illumination during characterization in ambient air. This visible degradation was as expected because of environmental oxygen and moisture penetration into the photoactive layer through the defects, which can be prevented by immediate encapsulation. Conducting AFM is utilized here to visualize these defects more prominently, which are impossible to see in typical AFM topography. Overall, significant development of atmospheric processing of BHJ OSCs is made, and performance stability is also studied to bring down the fabrication costs in the near future.

9.
Materials (Basel) ; 12(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408941

ABSTRACT

Low-voltage, solution-processed organic thin-film transistors (OTFTs) have tremendous potential to be key components in low-cost, flexible and large-area electronics. However, for these devices to operate at low voltage, robust and high capacitance gate dielectrics are urgently needed. Herein, the fabrication of OTFTs that operate at 1 V is reported. These devices comprise a solution-processed, self-assembled monolayer (SAM) modified tantalum pentoxide (Ta2O5) as the gate dielectric. The morphology and dielectric properties of the anodized Ta2O5 films with and without n-octadecyltrichlorosilane (OTS) SAM treatment have been studied. The thickness of the Ta2O5 film was optimized by varying the anodization voltage. The results show that organic TFTs gated with OTS-modified tantalum pentoxide anodized at 3 V (d ~7 nm) exhibit the best performance. The devices operate at 1 V with a saturation field-effect mobility larger than 0.2 cm2 V-1 s-1, threshold voltage -0.55 V, subthreshold swing 120 mV/dec, and current on/off ratio in excess of 5 × 103. As a result, the demonstrated OTFTs display a promising performance for applications in low-voltage, portable electronics.

10.
Nanoscale ; 11(13): 5914-5919, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30892370

ABSTRACT

We show here for the first time the Aggregation Induced Emission (AIE) mechanism and solvatochromic impact on Pt-SG (SG-deprotonated glutathione) nanoclusters. In this work, the AIE properties of Pt-SG clusters were investigated through computational and spectroscopic investigations. Computational data established that aggregation triggers a distinct change in the frontier molecular orbitals (FMOs) from metal d-orbital centered FMOs in the monomer to metal-thiolate and thiolate centered FMOs in the dimer improving the radiative decay process. Solvent dependent photoluminescence studies proved that a Lewis-acidic environment can significantly perturb the metal-thiolate and thiolate centered FMOs that are involved in the electronic transitions as predicted by our computational work. These semiconducting clusters exhibit a large Stokes shift and zero spectral overlap between absorption and emission which makes this Pt-SG cluster an excellent material for solar concentrators and solid-state light emitters. This AIE-OFF-ON emission was utilized to delineate a proof-of-concept sensor device that is sensitive to temperature and an acid/base.

11.
RSC Adv ; 8(47): 26771-26781, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541065

ABSTRACT

A robust doping strategy of Mn2+ ions in CdSe QDs has been developed in aqueous medium with mild microwave irradiation using the short-chain capping ligand 3-MPA. The concentration of the dopant is varied stoichiometrically in order to measure its effect on the conductivity of QD solids for further potential applications in the future. The synthesis parameters of CdSe QDs have been optimized to produce a uniform size among various samples to decouple the doping dependent conductivity from their bandgap. Doping yield is measured extensively by several studies like EDS, ICP-AES, and XPS. The layer-by-layer electrostatic assembly method has been exploited to fabricate thin film devices. I-V characteristics reveal that the electrical conductivity of 2% Mn2+-doped CdSe QD devices is enhanced on the order of ∼104 compared to its undoped counterpart. The "auto-ionization" of Mn2+ dopants in CdSe QDs due to the quantum confinement effect is one reason for this jump in conductivity as described in the Poole-Frenkel effect. STM measurements of the monolayer QD device shows its resistive switching properties. Importantly, the threshold voltage of switching decreased with the increase of doping concentration. All these results confirm the efficiency of Mn2+ doping in zinc-blende CdSe QDs in aqueous medium, by avoiding the "self-purification" effect of CdSe QDs, and their further application as a potential candidate for future memristor devices.

12.
ACS Appl Mater Interfaces ; 5(21): 11052-8, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24117352

ABSTRACT

The performance of redox-gated organic nonvolatile memory (NVM) based on conducting polymers was investigated by altering the polymer structure, composition, and local environment of three-terminal devices with a field-effect transistor (FET) geometry. The memory function was dependent on the presence of a redox active polymer with high conducting and low conducting states, the presence of a redox counter-reaction, and the ability to transport ions between the polymer and electrolyte phases. Simultaneous monitoring of both the "write" current and "readout" current revealed the switching dynamics of the devices and their dependence on the local atmosphere. Much faster and more durable response was observed in acetonitrile vapor than in a vacuum, indicating the importance of polar molecules for both ion motion and promotion of electrochemical reactions. The major factor determining "write" and "erase" speeds of redox-gated polymer memory devices was determined to be the rate of ion transport through the electrolyte layer to provide charge compensation for the conducting polarons in the active polymer layer. The results both confirm the mechanism of redox-gated memory action and identify the requirements of the conducting polymer, redox counter reaction, and electrolyte for practical applications as alternative solid-state nonvolatile memory devices.

14.
Philos Trans A Math Phys Eng Sci ; 367(1905): 4181-90, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19770142

ABSTRACT

We report that an enhancement in electrical bistability in devices based on organic molecules can be achieved by the introduction of semiconducting nanoparticles. Here, devices based on alternate layers of a dye in the xanthene class and CdSe nanoparticles have been compared with devices based on the individual components. Results from dye/CdSe devices have yielded an appreciable enhancement in electrical bistability compared with those based on the dye or the nanoparticles. The enhancement is due to augmented carrier transport through the nanoparticles to the dye that consequently undergoes a change in its conformation, having a higher conductivity. We have evidenced read-only and random-access memory applications in the dye/nanoparticle hybrid system.

16.
ACS Nano ; 2(9): 1930-8, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-19206434

ABSTRACT

We report growth, monolayer formation, and (electrical bistability and memory phenomenon) properties of hybrid core-shell nanoparticles. While inorganic quantum dots, such as CdS or CdSe, act as the core, a monolayer of ionic organic dye molecules, electrostatically bound to the surface of functionalized quantum dots, forms the shell. We form a monolayer of the core-shell hybrid nanoparticles via a layer-by-layer electrostatic assembly process. Growth and monolayer formation of the organic-inorganic hybrid nanoparticles have been substantiated by usual characterization methods, including electronic absorption spectroscopy of dispersed solution and atomic force microscope images of scratched films. Devices based on the hybrid nanoparticles have exhibited electrical bistability and memory phenomena. From the comparison of these properties in core-shell nanoparticles and in its components, we infer that the degree of conductance switching or on/off ratio is substantially higher in the hybrid nanoparticles. Also, they (core-shell particles) provide routes to tune the bistability and memory phenomena by choosing either of the components. A monolayer of hybrid nanoparticles has been characterized by a scanning tunneling microscope tip as the other electrode. We show that a single core-shell hybrid nanoparticle can exhibit bistability with an associated memory phenomenon. Charge confinement, as evidenced by an increase in the density of states, has been found to be the mechanism of electrical bistability.


Subject(s)
Coloring Agents/chemistry , Crystallization/methods , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Quantum Dots , Electric Conductivity , Ions , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...