Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L689-L708, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37642665

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease with no effective treatment that can reduce mortality or slow the disease progression. COPD is the third leading cause of global death and is characterized by airflow limitations due to chronic bronchitis and alveolar damage/emphysema. Chronic cigarette smoke (CS) exposure damages airway and alveolar epithelium and remains a major risk factor for the pathogenesis of COPD. We found that the expression of caveolin-1, a tumor suppressor protein; p53; and plasminogen activator inhibitor-1 (PAI-1), one of the downstream targets of p53, was markedly increased in airway epithelial cells (AECs) as well as in type II alveolar epithelial (AT2) cells from the lungs of patients with COPD or wild-type mice with CS-induced lung injury (CS-LI). Moreover, p53- and PAI-1-deficient mice resisted CS-LI. Furthermore, treatment of AECs, AT2 cells, or lung tissue slices from patients with COPD or mice with CS-LI with a seven amino acid caveolin-1 scaffolding domain peptide (CSP7) reduced mucus hypersecretion in AECs and improved AT2 cell viability. Notably, induction of PAI-1 expression via increased caveolin-1 and p53 contributed to mucous cell metaplasia and mucus hypersecretion in AECs, and reduced AT2 viability, due to increased senescence and apoptosis, which was abrogated by CSP7. In addition, treatment of wild-type mice having CS-LI with CSP7 by intraperitoneal injection or nebulization via airways attenuated mucus hypersecretion, alveolar injury, and significantly improved lung function. This study validates the potential therapeutic role of CSP7 for treating CS-LI and COPD. NEW & NOTEWORTHY Chronic cigarette smoke (CS) exposure remains a major risk factor for the pathogenesis of COPD, a debilitating disease with no effective treatment. Increased caveolin-1 mediated induction of p53 and downstream plasminogen activator inhibitor-1 (PAI-1) expression contributes to CS-induced airway mucus hypersecretion and alveolar wall damage. This is reversed by caveolin-1 scaffolding domain peptide (CSP7) in preclinical models, suggesting the therapeutic potential of CSP7 for treating CS-induced lung injury (CS-LI) and COPD.


Subject(s)
Caveolin 1 , Cigarette Smoking , Lung Injury , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Humans , Mice , Caveolin 1/pharmacology , Cigarette Smoking/adverse effects , Lung/metabolism , Lung Injury/pathology , Peptides/pharmacology , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/pathology , Tumor Suppressor Protein p53/metabolism
3.
Environ Res ; 213: 113677, 2022 10.
Article in English | MEDLINE | ID: mdl-35714684

ABSTRACT

The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.


Subject(s)
Neoplasms , Polycyclic Aromatic Hydrocarbons , Cytochrome P-450 Enzyme System , Epigenome , Humans , Neoplasms/chemically induced , Neoplasms/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Risk Assessment
7.
South Asian J Cancer ; 8(2): 80-84, 2019.
Article in English | MEDLINE | ID: mdl-31069183

ABSTRACT

BACKGROUND/OBJECTIVE: India is the world's most biodiverse region and is undergoing a period of dramatic social and economic change. Due to population's explosion, climate change and lax implementation of environmental policies, the incidence of breast cancer is increasing. From population-based cancer registry data, breast cancer is the most common cancer in women in urban registries where it constitutes more than 30% of all cancers in females. We conducted a meta-analysis of all breast cancer case-control studies conducted in India during 1991-2018 to find pooled estimates of odds ratio (OR). MATERIALS AND METHODS: Eligible studies were identified through a comprehensive literature search of PubMed, EMBASE, and HINARI databases from 1991 to January 2018. This analysis included 24 observational studies out of 34 that reported the case-control distribution of reproductive factors, body mass index (BMI) and type of residence. The analysis was performed using RevMan 5.3 (Review Manager, 2017) applying the random-effects model. RESULTS: A total of 21,511 patients (9889 cases and 11,622 controls) were analyzed, resulting in statistically significant association between breast cancer and the following reproductive factors: never breastfeed (OR: 3.69; 95% confidence interval [CI]: 1.70, 8.01), menopausal age >50 years (OR: 2.88; 95% CI: 1.85, 3.85), menarche age <13 years (OR: 1.83; 95% CI: 1.34, 2.51), null parity (OR: 1.58; 95% CI: 1.21, 2.06), postmenopause (OR: 1.35; 95% CI: 1.13, 1.62), and age at the 1st pregnancy >25 years (OR: 1.57; 95% CI: 1.37, 1.80). Family history (FH) of breast cancer (OR: 5.33; 95% CI: 2.89, 9.82), obesity (OR: 1.19; 95% CI: 1.00, 1.42), and urban residence (OR: 1.22; 95% CI: 1.03, 1.44) were also found to be significant risk factors. CONCLUSION: The results of this meta-analysis are indicative of significant associations between reproductive factors and breast cancer risk, profoundly so among women experiencing menopause after the age of 50, women who never breastfeed and FH of breast cancer.

9.
Biochim Biophys Acta Mol Cell Res ; 1865(3): 480-495, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29229477

ABSTRACT

PUMA, a BH3-only pro-apoptotic Bcl2 family protein, is known to translocate from the cytosol into the mitochondria in order to induce apoptosis. Interestingly, the induction of PUMA by p53 plays a critical role in DNA damage-induced apoptosis. In this study, we reported mitophagy inducing potential of PUMA triggered by phytolectin Abrus agglutinin (AGG) in U87MG glioblastoma cells and established AGG-induced ceramide acts as the chief mediator of mitophagy dependent cell death through activation of both mitochondrial ROS as well as ER stress. Importantly, AGG upregulates PUMA expression in U87MG cells with the generation of dysfunctional mitochondria, with gain and loss of function of PUMA is shown to alter mitophagy induction. At the molecular level, our study identified that the LC3 interacting region (LIR) located at the C-terminal end of PUMA interacts with LC3 in order to stimulate mitophagy. In addition, AGG is also found to trigger ubiquitination of PUMA which in turn interacted with p62 for prompting mitophagy suggesting that AGG turns on PUMA-mediated mitophagy in U87MG cells in both p62-dependent as well as in p62-independent manner. Interestingly, AGG-triggered ceramide production through activation of ceramide synthase-1 leads to induction of ER stress and ROS accumulation to promote mitochondrial damage as well as mitophagy. Further, upon pre-treatment with Mdivi-1, DRP1 inhibitor, AGG exposure results in suppression of apoptosis in U87MG cells indicating AGG-induced mitophagy switches to apoptosis that can be exploited for better cancer therapeutics.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Mitophagy/genetics , Neoplasms/drug therapy , Plant Lectins/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins/genetics , Apoptosis/genetics , Ceramides/biosynthesis , Ceramides/genetics , Cytosol/metabolism , DNA Damage/genetics , HeLa Cells , Humans , Mitochondria/genetics , Neoplasms/genetics , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
10.
Environ Toxicol Pharmacol ; 55: 175-185, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28886471

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD; polycyclic aromatic hydrocarbon) is a persistent and ubiquitous environmental contaminant that causes a wide variety of deleterious effects. In this study, the DNA damage and apoptotic activity induced by TCDD was examined using in silico and in vitro approaches. In silico study showed that conformational changes and energies involved in the binding of TCDD to cytochrome P450 1B1 (CYP1B1) were crucial for its target proteins. Moreover, activated TCDD had high affinity to bind with aryl hydrocarbon receptor (AhR), with a binding energy of -564.7 Kcal/mol. Further, TCDD-CYP1B1 complex showed strong binding affinity for caspase 3, showing a binding energy of -518.5 Kcal/mol, and the docking of caspase inhibitors in the complex showed weak interaction with low binding energy as compared to TCDD-CYP1B1 caspase complexes. Interestingly, TCDD-induced apoptosis was significantly suppressed in Ac-DEVD-CMK-pretreated cells. The DNA damage activity of TCDD was quantified by comet tail formation and γ-H2AX foci formation in HaCaT cells. The role of CYP1B1 and AhR in DNA damage and apoptosis was demonstrated, and clotrimazole as well as knockdown of CYP1B1 and AhR could inhibit TCDD activation and suppress DNA damage followed by apoptosis in HaCaT cells. Moreover, TCDD increased expression of p53 and PUMA and our data showed that TCDD induced DNA damage followed by p53-mediated apoptosis. This study highlights the critical role of CYP1B1 and AhR in TCDD activity and proposes that inhibition of these key molecules might serve as a potential therapeutic approach for treatment of allergy and cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cytochrome P-450 CYP1B1/metabolism , DNA Damage , Polychlorinated Dibenzodioxins/adverse effects , Receptors, Aryl Hydrocarbon/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Cell Line , Computer Simulation , Cytochrome P-450 CYP1B1/chemistry , Environmental Exposure/adverse effects , Gene Expression Regulation/drug effects , Humans , Polychlorinated Dibenzodioxins/pharmacology , Protein Conformation/drug effects
11.
Free Radic Biol Med ; 112: 452-463, 2017 11.
Article in English | MEDLINE | ID: mdl-28843778

ABSTRACT

Mitophagy, a special type of autophagy, plays an important role in the mitochondria quality control and cellular homeostasis. In this study, we examined the molecular mechanism of mitophagy induction with benzo[a]pyrene (B[a]P), a ubiquitous polycyclic aromatic hydrocarbon, which acts as a prosurvival response against apoptotic cell death. Our study showed that B[a]P displayed higher cytotoxicity in autophagy-deficient HaCaT cells as compared to control. Further, we showed that B[a]P triggered the Beclin-1-dependent autophagy through the mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) pathway. Moreover, our study indicated that the B[a]P-induced autophagy was initiated through the activation of cytochrome P450 1B1 (CYP1B1) and the aryl hydrocarbon receptor (AhR) in HaCaT cells. Intriguingly, the B[a]P-induced Beclin-1-mediated mitophagy was suppressed in CYP1B1 and AhR knockdown HaCaT cells, indicating a crucial role of B[a]P activation in the mitophagy induction to regulate cell death. B[a]P was shown to increase the mitochondrial dysfunction and decrease the mitochondrial membrane potential, resulting in depletion of ATP level along with the inhibition of the oxygen consumption rate in HaCaT cells. Importantly, the supplementation of methyl pyruvate compensated for the B[a]P-induced drop in the ATP level and mitigated the reactive oxygen species burden and autophagy. Mechanistically, B[a]P inhibited the manganese superoxide dismutase (MnSOD) activity and we found that the activated mitochondrial CYP1B1 interacted with MnSOD, inflicting mitophagy to protect from B[a]P-induced apoptosis. In summary, our study reveals mitophagy induction as a cellular protection mechanism against B[a]P-triggered toxicity and carcinogenesis.


Subject(s)
Apoptosis/drug effects , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Keratinocytes/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/antagonists & inhibitors , Adenosine Triphosphate/biosynthesis , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Beclin-1/genetics , Beclin-1/metabolism , Cell Line, Transformed , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Dose-Response Relationship, Drug , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Mitophagy/genetics , Oxygen Consumption/drug effects , Reactive Oxygen Species/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
12.
Toxicol Mech Methods ; 27(1): 1-17, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27919191

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Carcinogens/toxicity , Neoplasms/chemically induced , Phytotherapy/methods , Polycyclic Aromatic Hydrocarbons/toxicity , Carcinogenesis , Cytochrome P-450 Enzyme Inhibitors/therapeutic use , Cytochrome P-450 Enzyme System/biosynthesis , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Plant Preparations/therapeutic use , Receptors, Aryl Hydrocarbon/metabolism
13.
Mol Carcinog ; 56(2): 389-401, 2017 02.
Article in English | MEDLINE | ID: mdl-27182794

ABSTRACT

Abrus agglutinin (AGG), a type II ribosome-inactivating protein has been found to induce mitochondrial apoptosis. In the present study, we documented that AGG-mediated Akt dephosphorylation led to ER stress resulting the induction of autophagy-dependent cell death through the canonical pathway in cervical cancer cells. Inhibition of autophagic death with 3-methyladenine (3-MA) and siRNA of Beclin-1 and ATG5 increased AGG-induced apoptosis. Further, inhibiting apoptosis by Z-DEVD-FMK and N-acetyl cysteine (NAC) increased autophagic cell death after AGG treatment, suggesting that AGG simultaneously induced autophagic and apoptotic death in HeLa cells. Additionally, it observed that AGG-induced autophagic cell death in Bax knock down (Bax-KD) and 5-FU resistant HeLa cells, confirming as an alternate cell killing pathway to apoptosis. At the molecular level, AGG-induced ER stress in PERK dependent pathway and inhibition of ER stress by salubrinal, eIF2α phosphatase inhibitor as well as siPERK reduced autophagic death in the presence of AGG. Further, our in silico and colocalization study showed that AGG interacted with pleckstrin homology (PH) domain of Akt to suppress its phosphorylation and consequent downstream mTOR dephosphorylation in HeLa cells. We showed that Akt overexpression could not augment GRP78 expression and reduced autophagic cell death by AGG as compared to pcDNA control, indicating Akt modulation was the upstream signal during AGG's ER stress mediated autophagic cell death. In conclusion, we established that AGG stimulated cell death by autophagy might be used as an alternative tumor suppressor mechanism in human cervical cancer. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Endoplasmic Reticulum Stress/drug effects , Plant Lectins/pharmacology , Pleckstrin Homology Domains/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Ribosome Inactivating Proteins, Type 2/pharmacology , Abrus/chemistry , Antineoplastic Agents/isolation & purification , Endoplasmic Reticulum Chaperone BiP , Female , HeLa Cells , Humans , Models, Molecular , Plant Lectins/isolation & purification , Proto-Oncogene Proteins c-akt/chemistry , Ribosome Inactivating Proteins, Type 2/isolation & purification , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , eIF-2 Kinase/metabolism
14.
Oral Oncol ; 62: 122-135, 2016 11.
Article in English | MEDLINE | ID: mdl-27865365

ABSTRACT

Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.


Subject(s)
Mouth Neoplasms/pathology , Neoplastic Stem Cells/pathology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Humans , Mouth Neoplasms/drug therapy
15.
Biochem Biophys Res Commun ; 479(4): 940-946, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27693792

ABSTRACT

Mitophagy is a highly specialised type of autophagy that plays an important role in regulating mitochondrial dynamics and controls cellular quality during stress. In this study, we established that serum starvation led to induction of cellular inhibitor of apoptosis protein-1 (cIAP1), which regulates mitophagy through ubiquitination. Importantly, gain and loss of function of cIAP1 resulted in concomitant alteration in mitophagy confirming the direct implication of cIAP1 in induction of mitophagy. Interestingly, it was observed that cIAP1 translocated to mitochondria to associate with TOM20, Ulk1, and LC3 to initiate mitophagy. Further, cIAP1-induced mitophagy led to dysfunctional mitochondria that resulted in abrogation of mitochondrial oxygen consumption rate along with the decrease in ATP levels. The ubiquitination of cIAP1 was found to be the critical regulator of mitophagy. The disruption of cIAP1-ubiquitin interaction by PYR41 ensured the abrogation of cIAP1-LC3 interaction and mitophagy inhibition. Our study revealed an important function of cIAP1 as a crucial molecular link between autophagy and apoptosis for regulation of mitochondrial dynamics to mitigate cellular stress.


Subject(s)
Inhibitor of Apoptosis Proteins/metabolism , Mitophagy/physiology , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphate/metabolism , Apoptosis/physiology , Biological Transport, Active , Culture Media, Serum-Free , HeLa Cells , Humans , Membrane Transport Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondrial Dynamics/physiology , Mitochondrial Precursor Protein Import Complex Proteins , Oxygen Consumption , Receptors, Cell Surface/metabolism , Stress, Physiological , Ubiquitination
16.
Phytother Res ; 30(11): 1794-1801, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27432245

ABSTRACT

Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Bacopa/chemistry , Benzo(a)pyrene/chemistry , Plant Extracts/chemistry , Humans , Oxidative Stress , Plant Extracts/pharmacology , Reactive Oxygen Species
17.
Environ Toxicol Pharmacol ; 46: 131-139, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27458701

ABSTRACT

In this study, we examined potential adverse health effect of particulate matter (PM) collected from industrial areas of Rourkela, Odisha, India. Results indicate that PM in these areas contains benzo[a]pyrene in addition to other unidentified molecules. Ames test revealed the above PM to be highly mutagenic. Further studies of PM in HaCaT cells suggest its DNA damaging potential which may lead to apoptosis. Generation of reactive oxygen and nitrogen species following PM exposure may be an early event in the PM induced apoptosis. In addition, the activity of cytochrome P450 (CYP450), the key xenobiotic metabolism enzyme, was found to be increased following PM exposure indicating its role in PM induced toxicity. To confirm this, we used genetic and pharmacological inhibitors of CYP450 like CYP1B1 siRNA and Clotrimazole. Interestingly, we found that the use of these inhibitors significantly suppressed the PM induced apoptosis in HaCaT cells, which confirm the crucial role of CYP1B1 in the toxic manifestation of PM. For further analysis, blood samples were collected from the volunteer donor and analyzed for immunophenotypes and comet assay to survey any change in immune cells and DNA damage in blood cells respectively. The study was performed with 55 blood samples including 32 from industrial areas and 23 people from non-industrial zone of Rourkela city. Samples had a mean±SD age of 35±6.2years (35 men and 20 women). Our investigation did not observe any significant alteration in lymphocytes (P=0.671), B cell (P=0.104), cytotoxic T cell (P=0.512), helper T cell (P=0.396), NK cell (P=0.675) and monocytes (P=0.170) of blood cells from these two groups. Taken together; this study first time reports the possible health hazards of PM from industrial areas of Odisha, India.


Subject(s)
Environmental Exposure/analysis , Particulate Matter/analysis , Particulate Matter/toxicity , Air Pollutants/analysis , Air Pollutants/pharmacokinetics , Air Pollutants/toxicity , Animals , Apoptosis/genetics , Cell Line , Cities , Comet Assay , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , DNA Damage/drug effects , Humans , Inactivation, Metabolic , India , Keratinocytes/drug effects , Keratinocytes/pathology , Magnetic Resonance Spectroscopy , Mice , Mutagenicity Tests/methods , Particulate Matter/pharmacokinetics , Reactive Oxygen Species/metabolism , Spectrometry, Fluorescence
18.
Crit Rev Clin Lab Sci ; 53(4): 228-52, 2016 08.
Article in English | MEDLINE | ID: mdl-26743568

ABSTRACT

Oncophagy (cancer-related autophagy) has a complex dual character at different stages of tumor progression. It remains an important clinical problem to unravel the reasons that propel the shift in the role of oncophagy from tumor inhibition to a protective mechanism that shields full-blown malignancy. Most treatment strategies emphasize curbing protective oncophagy while triggering the oncophagy that is lethal to tumor cells. In this review, we focus on the trends in current therapeutics as well as various challenges in clinical trials to address the oncophagic dilemma and evaluate the potential of these developing therapies. A detailed analysis of the clinical and pre-clinical scenario of the anticancer medicines highlights the various inducers and inhibitors of autophagy. The ways in which tumor stage, the microenvironment and combination drug treatment continue to play an important tactical role are discussed. Moreover, autophagy targets also play a crucial role in developing the best possible solution to this oncophagy paradox. In this review, we provide a comprehensive update on the current clinical impact of autophagy-based cancer therapeutic drugs and try to lessen the gap between translational medicine and clinical science.


Subject(s)
Autophagy , Neoplasms , Animals , Apoptosis , Clinical Trials as Topic , Humans , Mice , Neoplasms/physiopathology , Neoplasms/therapy
19.
Free Radic Biol Med ; 89: 311-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409225

ABSTRACT

Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.


Subject(s)
Apoptosis , Autophagy , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/pathology , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , Autophagy-Related Protein-1 Homolog , Blotting, Western , Cell Proliferation , Cells, Cultured , HeLa Cells , Humans , Immunoenzyme Techniques , Immunoprecipitation , Membrane Potential, Mitochondrial , Mitochondria/metabolism
20.
Semin Cell Dev Biol ; 39: 43-55, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25724561

ABSTRACT

Autophagy in cancer is an intensely debated concept in the field of translational research. The dual nature of autophagy implies that it can potentially modulate the pro-survival and pro-death mechanisms in tumor initiation and progression. There is a prospective molecular relationship between defective autophagy and tumorigenesis that involves the accumulation of damaged mitochondria and protein aggregates, which leads to the production of reactive oxygen species (ROS) and ultimately causes DNA damage that can lead to genomic instability. Moreover, autophagy regulates necrosis and is followed by inflammation, which limits tumor metastasis. On the other hand, autophagy provides a survival advantage to detached, dormant metastatic cells through nutrient fueling by tumor-associated stromal cells. Manipulating autophagy for induction of cell death, inhibition of protective autophagy at tissue-and context-dependent for apoptosis modulation has therapeutic implications. This review presents a comprehensive overview of the present state of knowledge regarding autophagy as a new approach to treat cancer.


Subject(s)
Neoplasms/drug therapy , Neoplasms/immunology , Animals , Autophagy , Carcinogenesis , Drug Resistance, Neoplasm , Humans , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...