Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5400, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926403

ABSTRACT

Oxide heterostructures exhibit a vast variety of unique physical properties. Examples are unconventional superconductivity in layered nickelates and topological polar order in (PbTiO3)n/(SrTiO3)n superlattices. Although it is clear that variations in oxygen content are crucial for the electronic correlation phenomena in oxides, it remains a major challenge to quantify their impact. Here, we measure the chemical composition in multiferroic (LuFeO3)9/(LuFe2O4)1 superlattices, mapping correlations between the distribution of oxygen vacancies and the electric and magnetic properties. Using atom probe tomography, we observe oxygen vacancies arranging in a layered three-dimensional structure with a local density on the order of 1014 cm-2, congruent with the formula-unit-thick ferrimagnetic LuFe2O4 layers. The vacancy order is promoted by the locally reduced formation energy and plays a key role in stabilizing the ferroelectric domains and ferrimagnetism in the LuFeO3 and LuFe2O4 layers, respectively. The results demonstrate pronounced interactions between oxygen vacancies and the multiferroic order in this system and establish an approach for quantifying the oxygen defects with atomic-scale precision in 3D, giving new opportunities for deterministic defect-enabled property control in oxide heterostructures.

2.
Nat Commun ; 12(1): 1917, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33772004

ABSTRACT

PbMO3 (M = 3d transition metals) family shows systematic variations in charge distribution and intriguing physical properties due to its delicate energy balance between Pb 6s and transition metal 3d orbitals. However, the detailed structure and physical properties of PbFeO3 remain unclear. Herein, we reveal that PbFeO3 crystallizes into an unusual 2ap × 6ap × 2ap orthorhombic perovskite super unit cell with space group Cmcm. The distinctive crystal construction and valence distribution of Pb2+0.5Pb4+0.5FeO3 lead to a long range charge ordering of the -A-B-B- type of the layers with two different oxidation states of Pb (Pb2+ and Pb4+) in them. A weak ferromagnetic transition with canted antiferromagnetic spins along the a-axis is found to occur at 600 K. In addition, decreasing the temperature causes a spin reorientation transition towards a collinear antiferromagnetic structure with spin moments along the b-axis near 418 K. Our theoretical investigations reveal that the peculiar charge ordering of Pb generates two Fe3+ magnetic sublattices with competing anisotropic energies, giving rise to the spin reorientation at such a high critical temperature.

3.
Nat Commun ; 11(1): 5582, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33149138

ABSTRACT

Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ â†’  Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.

4.
Nat Commun ; 11(1): 4969, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33037206

ABSTRACT

Magnetic Weyl semimetals have novel transport phenomena related to pairs of Weyl nodes in the band structure. Although the existence of Weyl fermions is expected in various oxides, the evidence of Weyl fermions in oxide materials remains elusive. Here we show direct quantum transport evidence of Weyl fermions in an epitaxial 4d ferromagnetic oxide SrRuO3. We employ machine-learning-assisted molecular beam epitaxy to synthesize SrRuO3 films whose quality is sufficiently high to probe their intrinsic transport properties. Experimental observation of the five transport signatures of Weyl fermions-the linear positive magnetoresistance, chiral-anomaly-induced negative magnetoresistance, π phase shift in a quantum oscillation, light cyclotron mass, and high quantum mobility of about 10,000 cm2V-1s-1-combined with first-principles electronic structure calculations establishes SrRuO3 as a magnetic Weyl semimetal. We also clarify the disorder dependence of the transport of the Weyl fermions, which gives a clear guideline for accessing the topologically nontrivial transport phenomena.

5.
Inorg Chem ; 59(18): 13390-13397, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32869627

ABSTRACT

Bi and Pb ions with charge degree of freedom depending on 6s2 and 6s0 electronic configurations were combined with the Mn ion in a perovskite oxide. Comprehensive theoretical and experimental investigations revealed the Bi3+0.5Pb2+0.5Mn3+0.5Mn4+0.5O3 charge ordered state with CE-type spin and dz2 orbital orderings as observed in La0.5Ca0.5MnO3, Nd0.5Sr0.5MnO3, and Bi0.5Sr0.5MnO3. The charge and orbital orderings were preserved above 500 K owing to the stereochemical activity of Bi3+ and Pb2+ ions which stabilized the structural distortion.

6.
Inorg Chem ; 58(3): 1759-1763, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30652480

ABSTRACT

The pyrochlore-type Ca2Bi2O7 and Sr2Bi2O7 have been synthesized from a low-temperature hydrothermal route using NaBiO3·nH2O as a starting material. The crystal structures of these compounds were refined using synchrotron powder X-ray diffraction data. The cell parameters were found to be a = 10.75021 (5) Å and 10.94132 (6) Å for Ca2Bi2O7 and Sr2Bi2O7, respectively. Density functional theory calculations showed the metallic band structure, but the negligible mixing of O2 2p bands with the A-site alkaline-earth-metal states and weak overlap with the conduction bands result in the semiconducting behavior.

7.
Nature ; 537(7621): 523-7, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27652564

ABSTRACT

Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3-the geometric ferroelectric with the greatest known planar rumpling-we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially-from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

8.
Nat Commun ; 5: 2998, 2014.
Article in English | MEDLINE | ID: mdl-24389675

ABSTRACT

Improper ferroelectricity (trimerization) in the hexagonal manganites RMnO3 leads to a network of coupled structural and magnetic vortices that induce domain wall magnetoelectricity and magnetization (M), neither of which, however, occurs in the bulk. Here we combine first-principles calculations, group-theoretic techniques and microscopic spin models to show how the trimerization not only induces a polarization (P) but also a bulk M and bulk magnetoelectric (ME) effect. This results in the existence of a bulk linear ME vortex structure or a bulk ME coupling such that if P reverses so does M. To measure the predicted ME vortex, we suggest RMnO3 under large magnetic field. We suggest a family of materials, the hexagonal RFeO3 ferrites, also display the predicted phenomena in their ground state.

9.
Nat Mater ; 13(2): 163-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24292421

ABSTRACT

The coupling between the magnetic and electric dipoles in multiferroic and magnetoelectric materials holds promise for conceptually novel electronic devices. This calls for the development of local probes of the magnetoelectric response, which is strongly affected by defects in magnetic and ferroelectric ground states. For example, multiferroic hexagonal rare earth manganites exhibit a dense network of boundaries between six degenerate states of their crystal lattice, which are locked to both ferroelectric and magnetic domain walls. Here we present the application of a magnetoelectric force microscopy technique that combines magnetic force microscopy with in situ modulating high electric fields. This method allows us to image the magnetoelectric response of the domain patterns in hexagonal manganites directly. We find that this response changes sign at each structural domain wall, a result that is corroborated by symmetry analysis and phenomenological modelling, and provides compelling evidence for a lattice-mediated magnetoelectric coupling. The direct visualization of magnetoelectric domains at mesoscopic scales opens up explorations of emergent phenomena in multifunctional materials with multiple coupled orders.

10.
Phys Rev Lett ; 107(19): 197202, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22181639

ABSTRACT

Motivated by recent experimental results, we study the effect of size reduction on half-doped manganite, La(0.5)Ca(0.5)MnO(3), using the combination of density-functional theory (DFT) and dynamical mean-field theory (DMFT). We find that upon size reduction the charge-ordered antiferromagnetic phase, observed in bulk, is destabilized, giving rise to the stability of a ferromagnetic metallic state. Our theoretical results, carried out on a defect-free nanocluster in isolation, establish the structural changes that follow upon size reduction to be responsible for this. Our study further points out the effect of size reduction to be distinctively different from application of hydrostatic pressure. Interestingly, our DFT+DMFT study additionally reports the correlation-driven stability of the charge-orbitally ordered state in bulk La(0.5) Ca(0.5) MnO(3), even in the absence of long-range magnetic order.

11.
Phys Rev Lett ; 106(21): 217201, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21699334

ABSTRACT

The natural mineral azurite Cu(3)(CO(3))(2)(OH)(2) is a frustrated magnet displaying unusual and controversially discussed magnetic behavior. Motivated by the lack of a unified description for this system, we perform a theoretical study based on density functional theory as well as state-of-the-art numerical many-body calculations. We propose an effective generalized spin-1/2 diamond chain model which provides a consistent description of experiments: low-temperature magnetization, inelastic neutron scattering, nuclear magnetic resonance measurements, magnetic susceptibility as well as new specific heat measurements. With this study we demonstrate that the balanced combination of first principles with powerful many-body methods successfully describes the behavior of this frustrated material.

12.
Phys Rev Lett ; 100(18): 186402, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18518397

ABSTRACT

Using first-principles density functional calculations, we study the electronic and magnetic properties of the ferromagnetic insulating double perovskite compound La2NiMnO6, which has been reported to exhibit an interesting magnetic field sensitive dielectric anomaly as a function of temperature. Our study reveals the existence of very soft infrared active phonons that couple strongly with spins at the Ni and Mn sites through modification of the superexchange interaction. We suggest that these modes are the origin for the observed dielectric anomaly in La2NiMnO6.

SELECTION OF CITATIONS
SEARCH DETAIL
...