Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364371

ABSTRACT

An assemblage nexus of microorganisms enclosed in a composite extracellular polymeric matrix is called as a biofilm. The main factor causing biological fouling, or biofouling, is biofilms. Biofilm-mediated biofouling is a significant detrimental issue in several industries, including the maritime environment, industrial facilities, water treatment facilities, and medical implants. Conventional antibacterial remedies cannot wholly eradicate bacterial species owing to the structural rigidity of biofilm and the eventual growth of antibiotic-resistant microorganisms. Consequently, several approaches to disrupt the biofilm have been investigated to address this particular phenomenon. Antimicrobial peptides (AMPs) have emerged as a promising contender in this category, offering several advantages over traditional solutions, including broad-spectrum action and lack of antibiotic resistance. Because biofouling significantly impacts the marine industry, AMPs derived from marine sources may be suitable natural inhibitors of bacterial proliferation. In this article, we discuss the range of physicochemical and structural diversity and the model of action seen in marine AMPs. This makes them an appealing strategy to mitigate biofilm and biofilm-mediated biofouling. This review also systematically summarizes recent research on marine AMPs from vertebrates and invertebrates and their industrial significance, shedding light on developing even better anti-biofouling materials shortly.


Subject(s)
Antimicrobial Peptides , Biofouling , Animals , Biofouling/prevention & control , Biofilms , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
Elife ; 102021 11 25.
Article in English | MEDLINE | ID: mdl-34821553

ABSTRACT

Macaque monkeys are widely used to study vision. In the traditional approach, monkeys are brought into a lab to perform visual tasks while they are restrained to obtain stable eye tracking and neural recordings. Here, we describe a novel environment to study visual cognition in a more natural setting as well as other natural and social behaviors. We designed a naturalistic environment with an integrated touchscreen workstation that enables high-quality eye tracking in unrestrained monkeys. We used this environment to train monkeys on a challenging same-different task. We also show that this environment can reveal interesting novel social behaviors. As proof of concept, we show that two naive monkeys were able to learn this complex task through a combination of socially observing trained monkeys and solo trial-and-error. We propose that such naturalistic environments can be used to rigorously study visual cognition as well as other natural and social behaviors in freely moving monkeys.


Subject(s)
Cognition , Macaca radiata/physiology , Social Behavior , Visual Perception , Animals , Learning , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...