Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2184, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391500

ABSTRACT

The discovery of resistance switching memristors marks a paradigm shift in the search for alternative non-volatile memory components in the semiconductor industry. Normally a dielectric in these bistable memory cells changes its resistance with an applied electric field or current, albeit retaining the resistive state based on the history of the applied field. Despite showing immense potential, sustainable growth of this new memory technology is bogged down by several factors including cost, intricacies of design, lack of efficient tunability, and issues with scalability and eco-friendliness. Here, we demonstrate a simple arrangement wherein an ethanol-adsorbed ZnO thin film exhibits orders of magnitude change in resistance when activated by visible light. We show that there exists two stable ohmic states, one in the dark and the other in the illuminated regime, as well as a significant delay in the transition between these saturated states. We also demonstrate that visible light acts as a non-invasive tuning parameter for the bistable resistive states. Furthermore, a pinched hysteresis I-V response observed in these devices indicate what seems to be a new type of memristive behaviour.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026309, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463319

ABSTRACT

The immiscible displacement of oil by water in a circular microchannel was investigated. A fused silica microchannel with an inner diameter of 250 µm and a length of 7 cm was initially filled with a viscous silicone oil. Only water then was injected into the channel. We describe our flow observations based on the two-dimensional images captured in the middle of the channel. The water finger displaced the oil and left an oil film on the channel wall. While the oil was being displaced at the core, the flow resistance decreased, which resulted in increases in water flow rate and inertia. Eventually, the water finger reached the channel exit and formed a core-annular flow pattern. The wavelength of the waves formed at the oil-water interface also increased with the increase in inertia. The initially symmetric interfacial waves became asymmetric with time. Also, the water core shifted from the center of the channel and left a thinner oil film on one side of the microchannel. Under all flow rates tested in this study, as long as the water was continuously injected, the water core was stable and no breakup into droplets was observed. We also discuss the flow stability based on nonlinear and linear stability analyses performed on the core-annular flow. Compared to the linear analysis, which ignores the inertia effects, the nonlinear analysis, which includes the inertia effects, predicts longer interfacial wavelengths by a factor of 1/sqrt[1-a(o)/2(We(w) + We(o)a(o)(2)/1-a(o)(2))] where We(w) and We(o) are the Weber numbers of the water and the oil phases, respectively, and a(o) is the unperturbed water core radius made dimensionless by the channel radius.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(4 Pt 2): 046314, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20481834

ABSTRACT

The dynamics of a long, two-dimensional vapor bubble confined in the gap between two superheated or subcooled parallel plates is analyzed theoretically. The unsteady expansion and/or contraction of the bubble is driven by mass transfer between the liquid and the vapor. The analysis uses the approach developed by Wilson [J. Fluid Mech. 391, 1 (1999)] for a situation with "large" gaps and "small" superheating or subcooling to consider a situation with small gaps and large superheating or subcooling in which the mass transfer from or to the semicircular nose of the bubble is comparable to that from or to the thin liquid films on the plates. In order to permit a (semi-) analytical treatment the analysis is restricted to low Prandtl number liquids. When both plates are superheated the bubble always expands. In this case there are two possible constant-velocity continuous-film solutions for the expansion of the bubble, namely, an unstable fast mode and a stable slow mode. The evolution of the bubble is calculated numerically for a range of values of the parameters. In particular, these calculations show that eventually the bubble expands either with the constant velocity of the slow mode or exponentially. When both plates are subcooled the bubble always collapses to zero length in a finite time. When one plate is subcooled and the other plate is superheated the situation is rather more complicated. If the magnitude of the subcooling is less than that of the superheating then if the magnitude of the subcooling is greater than a critical value then a variety of complicated behaviors (including the possibility of an unexpected "waiting time" behavior in which the bubble remains almost stationary for a finite period of time) can occur before the bubble eventually collapses to a finite length in an infinite time, whereas if it is less than this critical value then the bubble always expands and eventually does so exponentially. If the magnitude of the subcooling is greater than that of the superheating then the bubble always collapses to zero length in a finite time.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036318, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365865

ABSTRACT

The stability of a water layer of uniform thickness held in a two-dimensional container of finite or semi-infinite extent is examined using linear stability theory. The liquid-vapor interface can be heated both through the liquid and through the vapor, as previously experimentally reported. The need to introduce a heat transfer coefficient is eliminated by introducing statistical rate theory (SRT) to predict the evaporation flux. There are no fitting or undefined parameters in the expression for the evaporation flux. The energy transport is parametrized in terms of the evaporation number, Eev, that for a given experimental circumstance can be predicted. The critical Marangoni number for the finite, Macf, and for the semi-infinite system, Mac(infinity), can be quantitatively predicted. Experiments in which water evaporated from a stainless-steel funnel and from a polymethyl methacrylate (PMMA) funnel into its vapor have been previously reported. Marangoni convection was observed in the experiments that used the stainless-steel funnel but not with the PMMA funnel even though the Marangoni number for the PMMA funnel was more than 27,000. The SRT-based stability theory indicates that the critical value of the Marangoni number for the experiments with the PMMA funnel was greater than the experimental value of the Marangoni number in each case; thus, no Marangoni convection was predicted to result from an instability. The observed convection with the stainless-steel funnel resulted from a temperature gradient imposed along the interface.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 065303, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677317

ABSTRACT

We have formulated a generalization of the energy boundary condition for fluid-fluid interfaces that includes the transport of the Gibbs excess internal energy. A newly measured surface property - the surface thermal capacity c(sigma) - appears in the result, and couples the temperature and velocity fields. If this term is not included in the energy boundary condition at liquid-vapor interfaces, the energy-conservation principle cannot be satisfied during steady-state evaporation of H(2)O(l) or D(2)O(l) . The c(sigma) term is possibly important in a number of other circumstances, and its importance can be determined from the magnitude of two nondimensional numbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...