Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 113(2): 21, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096383

ABSTRACT

Imazethapyr is the most common herbicide used for weed management in pulses. A field trial was carried out with imazethapyr 10% SL formulation at 100 and 150 g a.i./ha application rates, as pre-and post-emergence, to study dissipation of imazethapyr in soil, persistence in urdbean plant, terminal residues in urdbean grains and effect on soil microbes. An acetate buffered- quick, easy, cheap, effective, rugged, and safe (QuEChERS) method in combination with high-performance liquid chromatography (HPLC) was validated for imazethapyr residue analysis. The half-life of imazethapyr in soil ranged from 15.12 to 18.02 days. The residues of imazethapyr persist up to 60 days in soil and up to 7-15 days in urdbean plant. Residues were not detected in grains at the time of harvest. Persistence of imazethapyr residues in soil significantly impact soil microbial populations depending on herbicide application rates and timing.


Subject(s)
Herbicides , Nicotinic Acids , Pesticide Residues , Soil Microbiology , Soil Pollutants , Soil , Vigna , Herbicides/analysis , Soil Pollutants/analysis , Vigna/chemistry , Nicotinic Acids/analysis , Pesticide Residues/analysis , Soil/chemistry , Kinetics , Chromatography, High Pressure Liquid , Half-Life
2.
Sci Rep ; 13(1): 6508, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081033

ABSTRACT

Mono-cropping of maize-wheat, mechanical disintegration of soils, and continuous chemical fertilization have deteriorated soil health in the Indo-Gangetic Plains. We studied the long-term impact of pulse-based cropping systems with integrated nutrient management on soil physical and chemical properties and yield sustainability. We evaluated four different cropping systems: (1) maize-wheat (M-W), (2) maize-wheat-mungbean (M-W-Mb), (3) maize-wheat-maize-chickpea (M-W-M-C), (4) pigeonpea-wheat (P-W) each with three degrees of soil fertilization techniques: (1) unfertilized control (CT), (2) inorganic fertilization (RDF), and (3) integrated nutrient management (INM). The field experiment was undertaken in a split-plot design with three replications each year with a fixed layout. P-W and M-W-Mb systems enhanced soil properties such as volume expansion by 9-25% and porosity by 7-9% (p < 0.05) more than M-W, respectively. P-W and M-W-Mb increased soil organic carbon by 25-42% and 12-50% over M-W (RDF). P-W system enhanced water holding capacity and gravimetric moisture content by 10 and 11% (p < 0.05) than M-W. Pulse-based systems (P-W and M-W-Mb) had higher available nitrogen (8-11%), phosphorus (42-73%), and potassium (8-12%) over M-W (p < 0.05). M-W-Mb increased 26% maize yield and 21% wheat yield over M-W (p < 0.05) at the thirteenth crop cycle. P-W system had a higher sustainable yield index (p < 0.05) of wheat over the M-W. Thus, pulse inclusion in the cropping system in combination with INM can enhance physical and chemical properties vis-à-vis sustainable yield index over the cereal-cereal system.

3.
Folia Microbiol (Praha) ; 62(5): 425-435, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28285373

ABSTRACT

Rhizobia are a group of organisms that are well known for their ability to colonize root surfaces and form symbiotic associations with legume plants. They not only play a major role in biological nitrogen fixation but also improve plant growth and reduce disease incidence in various crops. Rhizobia are known to control the growth of many soilborne plant pathogenic fungi belonging to different genera like Fusarium, Rhizoctonia, Sclerotium, and Macrophomina. Antagonistic activity of rhizobia is mainly attributed to production of antibiotics, hydrocyanic acid (HCN), mycolytic enzymes, and siderophore under iron limiting conditions. Rhizobia are also reported to induce systemic resistance and enhance expression of plant defense-related genes, which effectively immunize the plants against pathogens. Seed bacterization with appropriate rhizobial strain leads to elicitation and accumulation of phenolic compounds, isoflavonoid phytoalexins, and activation of enzymes like L-phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), peroxidase (POX), polyphenol oxidase (PPO), and others involved in phenylpropanoid and isoflavonoid pathways. Development of Rhizobium inoculants with dual attributes of nitrogen fixation and antagonism against phytopathogens can contribute to increased plant growth and productivity. This compilation aims to bring together the available information on the biocontrol facet of rhizobia and identify research gaps and effective strategies for future research in this area.


Subject(s)
Antibiosis , Fungi/growth & development , Nitrogen Fixation , Plant Diseases/prevention & control , Plant Roots/microbiology , Rhizobium/growth & development , Soil Microbiology , Plant Development , Rhizobium/metabolism
4.
Indian J Microbiol ; 57(1): 48-59, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28148979

ABSTRACT

Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma viride-Mesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13-21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10-11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

SELECTION OF CITATIONS
SEARCH DETAIL