Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 206(1): 25, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108905

ABSTRACT

Plant extracts have been used to treat microbiological diseases for centuries. This study examined plant triterpenoids tormentic acid (TA) and 23-hydroxycorosolic acid (HCA) for their antibiofilm effects on Staphylococcus aureus strains (MTCC-96 and MTCC-7405). Biofilms are bacterial colonies bound by a matrix of polysaccharides, proteins, and DNA, primarily impacting healthcare. As a result, ongoing research is being conducted worldwide to control and prevent biofilm formation. Our research showed that TA and HCA inhibit S. aureus planktonic growth by depolarizing the bacterial membrane. In addition, zone of inhibition studies confirmed their effectiveness, and crystal violet staining and biofilm protein quantification confirmed their ability to prevent biofilm formation. TA and HCA exhibited substantial reductions in biofilm formation for S. aureus (MTCC-96) by 54.85% and 48.6% and for S. aureus (MTCC-7405) by 47.07% and 56.01%, respectively. Exopolysaccharide levels in S. aureus biofilm reduced significantly by TA (25 µg/mL) and HCA (20 µg/mL). Microscopy, bacterial motility, and protease quantification studies revealed their ability to reduce motility and pathogenicity. Furthermore, TA and HCA treatment reduced the mRNA expression of S. aureus virulence genes. In silico analysis depicted a high binding affinity of triterpenoids for biofilm and quorum-sensing associated proteins in S. aureus, with TA having the strongest affinity for TarO (- 7.8 kcal/mol) and HCA for AgrA (- 7.6 kcal/mol). TA and HCA treatment reduced bacterial load in S. aureus-infected peritoneal macrophages and RAW264.7 cells. Our research indicates that TA and HCA can effectively combat S. aureus by inhibiting its growth and suppressing biofilm formation.


Subject(s)
Staphylococcus aureus , Triterpenes , Triterpenes/pharmacology , Bacterial Load , Biofilms
2.
Microbiol Res ; 263: 127126, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35914415

ABSTRACT

Cell Surface hydrophobicity is one of the determinant biophysical parameters of bacterial aggregation for being networked to form a biofilm. Phytoconstituent, like vitexin, has long been in use for their antibacterial effect. The present work demonstrates the role of vitexin in modulating Staphylococcus aureus surface hydrophobicity while aggregating to form biofilm and pathogenesis in a host. In planktonic form, vitexin shows minimum inhibitory concentration at 252 µg/ml against S. aureus. Sub-MIC doses of vitexin and antibiotics (26 µg/ml of vitexin, 55 µg/ml of azithromycin, and 2.5 µg/ml of gentamicin) were selected to treat S. aureus. Dead cell counts after treatment were studied through flow cytometry. As dead cell counts were minimal (<5 %), these doses were considered for all subsequent experiments. While studying aggregating cells, it was observed that vitexin reduces S. aureus surface hydrophobicity and membrane permeability at the sub-MIC dose of 26 µg/ml. The in silico binding analysis showed a higher binding affinity of vitexin with surface proteins (IcaA, DltA, and SasG) of S. aureus. Down-regulation of dltA and icaAB expression, along with the reduction in membrane potential with a sub-MIC dose of vitexin, explains reduced S. aureus surface hydrophobicity. Vitexin was found to interfere with S. aureus biofilm-associated protein biomass, EPS production, and swarming movement. Subsequently, the suppression of proteases production and down-regulation of icaAB and agrAC gene expression with a sub-MIC dose of vitexin explained the inhibition of S. aureus virulence in vitro. Besides, vitexin was also found to potentiate the antibiofilm activity of sub-MIC doses of gentamicin and azithromycin. Treatment with vitexin exhibits a protective response in S. aureus infected macrophages through modulation of expression of cytokines like IL-10 and IL-12p40 at protein and mRNA levels. Furthermore, CFU count and histological examination of infected mouse tissue (liver and spleen) justify the in vivo protective effect of vitexin from S. aureus biofilm-associated infection. From this study, it can be inferred that vitexin can reduce S. aureus surface hydrophobicity, leading to interference with aggregation at the time of biofilm formation and subsequent pathogenesis in a host.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Apigenin , Azithromycin/pharmacology , Biofilms , Gentamicins/pharmacology , Hydrophobic and Hydrophilic Interactions , Mice , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology
3.
Mol Divers ; 26(1): 137-156, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33438129

ABSTRACT

Multidrug resistance mechanism of microorganisms towards conventional antimicrobials nowadays faces a common health problem. So, searching and development of new antibacterials are in the frontier areas of biochemistry. Functionalizations of various natural products or synthesis of compounds through molecular modeling followed by virtual screening are the ways to obtain potential leads. Chrysin is one of the plant secondary metabolites and is ubiquitously present in majority of plants. It has multi-dimensional potentiality however, with a very low bioavailability causing a very low efficacy. Very few chrysin derivatives possessing antimicrobial activity with a low anti-biofilm efficacy have been found in the literature. Thus, it has been attempted to synthesize a series of new chrysin derivatives (CDs). In this study, twenty-two new derivatives have been synthesized via its 7-OH modulation and antibiofilm activity was evaluated against a model bacterium viz. Escherichia coli MTCC 40 (Gram negative). Eleven CDs coded as 2a, 2b, 2c, 2e, 2f, 2g, 2h, 2i, 3j, 3k and 3l have been found more potent compared to chrysin (precursor of CDs) against planktonic form of E. coli. Biofilm inhibition studies indicated a noteworthy results for 2a (93.57%), 2b (92.14%), 2f (92.14%) and 3l (93.57%) compared to chrysin (33.57%). E. coli motility was also highly restricted by 2a, 2b, 2f and 3l than chrysin at their sub-inhibitory concentrations. Solubility studies indicated an extended-release of 2a, 2b, 2f and 3l in physiological systems. Relatively higher bioavailability of 2a, 2b, 2f and 3l than chrysin was revealed from the dissolution experiments and was further validated through in silico ADME-based SAR analysis. Hence, this study is more interesting in regard to antibacterial potentiality of chrysin derivatives against Escherichia coli MTCC 40 (Gram negative). Thus, this article might be useful for further design and development of new leads in the context of biofilm-associated bacterial infections.


Subject(s)
Escherichia coli , Flavonoids , Anti-Bacterial Agents/chemistry , Biofilms , Flavonoids/pharmacology , Microbial Sensitivity Tests
4.
Cytokine ; 137: 155319, 2021 01.
Article in English | MEDLINE | ID: mdl-33002744

ABSTRACT

Leishmania donovani, a protozoan parasite, inflicts the disease Visceral leishmaniasis (VL) Worldwide. The only orally bioavailable drug miltefosine is toxic, whereas liposomal amphotericin B (AmpB) is expensive. Lupeol, a triterpenoid from Sterculia villosa bark, was exhibited immunomodulatory and anti-leishmanial activity in experimental VL. Herein, we evaluated synergism between sub-optimum dose of AmpB and lupeol in anti-leishmanial and immunomodulatory effects in L. donovani-infected BALB/c mice. We observed that a combination of sub-optimum dose of lupeol and AmpB significantly reduced the hepatic and splenic parasitic burden accompanied by enhanced nitric oxide production, robust induction of Th1 cytokines (IL-12 and IFN-γ) but suppressed Th2 cytokine (IL-10 and TGF- ß) production. The treatment with the lupeol-AmpB combination enhanced p38mitogen-activated protein kinase (p38MAPK), but reduced extracellular signal-related kinase (ERK-1/2), phosphorylation and up-regulated pro-inflammatory response. The present work thus indicates a lupeol-AmpB-mediated immunotherapeutic approach for eliminating the parasite-induced immunosuppression.


Subject(s)
Amphotericin B/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Pentacyclic Triterpenes/pharmacology , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Drug Synergism , Gene Expression/drug effects , Gene Expression/immunology , Immunoblotting , Immunomodulation/drug effects , Immunomodulation/immunology , Leishmania donovani/immunology , Leishmania donovani/physiology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Mice, Inbred BALB C , Nitrites/immunology , Nitrites/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spleen/drug effects , Spleen/metabolism , Spleen/parasitology
5.
Microb Pathog ; 139: 103901, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31790796

ABSTRACT

Formation of biofilm is the major cause of Pseudomonas aeruginosa associated pathological manifestations in the urinary tract, respiratory system, gastrointestinal tract, skin, soft tissues etc. Triterpenoid group of compounds have shown their potential in reducing planktonic and biofilm form of bacteria. Sarcochlamys pulcherrima (Roxb.) Gaud. is an ethnomedicinal plant traditionally used for its anti-microbial and anti-inflammatory property. In the present study two triterpenoids, have been isolated from this plant, characterised and evaluated for their antibacterial and antibiofilm potential against P. aeruginosa. Compounds were characterised as 2α, 3ß, 19α-trihydroxy-urs-12-ene-28-oic acid (Tormentic acid) and 2α, 3ß, 23-trihydroxyurs-12-ene-28-oic acid (23-hydroxycorosolic acid) through spectroscopic studies viz. infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopy (MS). Depolarization of bacterial membrane and zone of inhibition studies revealed that both the compounds inhibited the growth of planktonic bacteria. Compounds were also found to inhibit the formation of P. aeruginosa biofilm. Inhibition of biofilm found to be mediated through suppressed secretion of pyoverdin, protease and swarming motility of P. aeruginosa. Gene expression study, in silico binding analysis, in vivo bacterial load and tissue histology observations also supported the antibiofilm activity of both the compounds. In vitro and in vivo study showed that both compounds were non-toxic. The study has explored the antibacterial and antibiofilm effect of two triterpenes isolated for the first time from S. pulcherrima.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Extracts/pharmacology , Triterpenes/pharmacology , Urticaceae/chemistry , Anti-Bacterial Agents/chemistry , Molecular Structure , Plant Extracts/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Triterpenes/chemistry
6.
Arch Microbiol ; 201(4): 487-498, 2019 May.
Article in English | MEDLINE | ID: mdl-30386884

ABSTRACT

Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.


Subject(s)
DNA Damage , Macrophages/microbiology , Mycobacterium smegmatis/physiology , Oxidative Stress , Animals , Cytokines/genetics , Cytokines/metabolism , Free Radicals/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice , RAW 264.7 Cells , Toll-Like Receptor 4/metabolism
7.
World J Microbiol Biotechnol ; 34(11): 170, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30406882

ABSTRACT

Coumarin is an important heterocyclic molecular framework of bioactive molecules against broad spectrum pathological manifestations. In the present study 18 new coumarin derivatives (CDs) were synthesized and characterized for antibiofilm activity against two model bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. It was observed that all the CDs executed significant effect in moderating activities against both planktonic and biofilm forms of these selected bacteria. Hence, to interpret the underlying probable reason of such antibiofilm effect, in-silico binding study of CDs with biofilm and motility associated proteins of these organisms were performed. All CDs have shown their propensity for occupying the native substrate binding pocket of each protein with moderate to strong binding affinities. One of the CDs such as CAMN1 showed highest binding affinity with these proteins. Interestingly, the findings of in-silico studies coincides the experimental results of antibiofilm and motility affect of CDs against both S. aureus and P. aeruginosa. Moreover, in-silico studies suggested that the antibiofilm activity of test CDs may be due to the interference of biofilm and motility associated proteins of the selected model organisms (PilT from P. aeruginosa and TarK, TarO from S. aureus). The detailed synthesis, characterization, methodology and results of biological screening along with computational studies have been reported. This study could be of greater interest in the context of the development of new anti-bacterial agent in the future.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Coumarins/chemistry , Coumarins/chemical synthesis , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Adhesins, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Binding Sites , Biofilms/growth & development , Computer Simulation , Coumarins/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Phenotype , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development
8.
Int J Antimicrob Agents ; 50(4): 512-522, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28669838

ABSTRACT

Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis, caused by the protozoan parasite Leishmania donovani. Nowadays there is a growing interest in the therapeutic use of natural products to treat parasitic diseases. Sterculia villosa is an ethnomedicinally important plant. A triterpenoid was isolated from this plant and was screened for its antileishmanial and immunomodulatory activities in vitro and in vivo. Biochemical colour test and spectroscopic data confirmed that the isolated pure compound was lupeol. Lupeol exhibited significant antileishmanial activity, with IC50 values of 65 ± 0.41 µg/mL and 15 ± 0.45 µg/mL against promastigote and amastigote forms, respectively. Lupeol caused maximum cytoplasmic membrane damage of L. donovani promastigote at its IC50 dose. It is well known that during infection the Leishmania parasite exerts its pathogenicity in the host by suppressing nitric oxide (NO) production and inhibiting pro-inflammatory responses. It was observed that lupeol induces NO generation in L. donovani-infected macrophages, followed by upregulation of pro-inflammatory cytokines and downregulation of anti-inflammatory cytokines. Lupeol was also found to reduce the hepatic and splenic parasite burden through upregulation of the pro-inflammatory response in L. donovani-infected BALB/c mice. Strong binding affinity of lupeol was observed for four major potential drug targets, namely pteridine reductase 1, adenine phosphoribosyltransferase, lipophosphoglycan biosynthetic protein and glycoprotein 63 of L. donovani, which also supported its antileishmanial and immunomodulatory activities. Therefore, the present study highlights the antileishmanial and immunomodulatory activities of lupeol in an in vitro and in vivo model of VL.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Pentacyclic Triterpenes/pharmacology , Sterculia/chemistry , Animals , Cell Membrane/drug effects , Cytokines/immunology , Immunomodulation/drug effects , Leishmaniasis, Visceral/parasitology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Nitric Oxide/biosynthesis , Parasitic Sensitivity Tests , Plant Extracts/pharmacology , Th1 Cells/immunology , Th2 Cells/immunology
9.
Chem Biodivers ; 14(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28686323

ABSTRACT

In the context of ethno botanical importance with no phytochemical investigations, Mussaenda roxburghii have been investigated to explore it's phytoconstituents and studies of their antibiofilm activity. Four compounds have been isolated from the aerial parts of this plant and were characterized as 2α,3ß,19α,23-tetrahydroxyurs-12-en-28-oic acid (1), ß-sitosterol glucoside (4), lupeol palmitate (5), and myoinositol (6). All these compounds were tested for antibacterial and antibiofilm activity against Pseudomonas aeruginosa. Compound 1 exhibited three times more antibiofilm activity with minimum inhibitory concentration (MIC) at 0.74 mm compared to that of streptomycin. Molecular docking studies exhibited a very high binding affinity of 1 with P. aeruginosa quorum sensing proteins and motility associated proteins viz. LasR and PilB, PilY1, PilT, respectively. Compound 1 was also found to be non-cytotoxic against sheep RBC and murine peritoneal macrophages at selected sub-MIC doses.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Rubiaceae/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Erythrocytes , Macrophages , Mice , Microbial Sensitivity Tests , Molecular Conformation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Sheep , Structure-Activity Relationship
10.
Pharm Biol ; 55(1): 998-1009, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28173714

ABSTRACT

CONTEXT: Visceral leishmaniasis is a protozoan disease caused by Leishmania donovani parasite. The genus Sterculia (Malvaceae) possesses ethnobotanical potential against this protozoan infection. OBJECTIVE: Determining the potential role of methanol bark extracts from Sterculia villosa Roxb (SVE) and its phytoconstituents against Leishmania donovani promastigotes. MATERIALS AND METHODS: SVE was analysed by TLC, UV-Vis, IR spectroscopy and biochemical assays. Antileishmanial potential of SVE (0.5-130 µg/mL for 72 h) was characterized by MTT assay. Fluorescent microscopy was performed to validate the IC50 dose. To determine the effect of SVE on promastigotes, reactive oxygen species (ROS) and superoxide generation, lipid peroxidation and DNA fragmentation assays were performed. Molecular aggregation of compounds was determined by atomic force microscopy (AFM). Extent of cytotoxicity of SVE at IC50 dose was determined against RAW 264.7 macrophages, peritoneal macrophages and murine RBCs. In vivo cytotoxicity of SVE was evaluated in BALB/c mice. RESULT: SVE exhibited reverse dose dependent antileishmanial activity when 130-0 µg/mL doses were tested against promastigotes. The IC50 and IC70 values were found to be 17.5 and 10 µg/mL, respectively. SVE at IC50 dose demonstrated elevated level of ROS, superoxide, lipid peroxidation and DNA fragmentation against promastigotes with no cytotoxicity. AFM analysis suggested increasing size of molecular aggregation (31.3 nm < 35.2 nm < 2.93 µm) with increase in concentration (10 µg < 17.5 µg < 130 µg). DISCUSSION AND CONCLUSIONS: The study elucidates the antileishmanial potential of SVE against Leishmania donovani promastigotes by exerting oxidative stress and DNA damage. In sum, SVE can be explored as an immunotherapeutic candidate against leishmaniasis and other infectious diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Methanol/chemistry , Phytochemicals/pharmacology , Plant Bark/chemistry , Plant Extracts/pharmacology , Solvents/chemistry , Sterculia/chemistry , Animals , Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/toxicity , Chromatography, Thin Layer , DNA Fragmentation , Dose-Response Relationship, Drug , Leishmania donovani/genetics , Leishmania donovani/growth & development , Leishmania donovani/metabolism , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Lethal Dose 50 , Lipid Peroxidation/drug effects , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/pathology , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Phytochemicals/isolation & purification , Phytochemicals/toxicity , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plants, Medicinal , RAW 264.7 Cells , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Superoxides/metabolism , Time Factors
11.
Sci Rep ; 6: 23347, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27000525

ABSTRACT

Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 µg/ml. It's antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 µg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Apigenin/pharmacology , Azithromycin/pharmacology , Biofilms , Gentamicins/pharmacology , Pseudomonas aeruginosa/drug effects , Animals , Mice , Microbial Sensitivity Tests , Pseudomonas aeruginosa/metabolism , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL
...