Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pineal Res ; 75(2): e12894, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37365144

ABSTRACT

Female night-workers get exposed to frequent light shifts, hence have altered circadian rhythm and are at high risk of endometrial cancer; the underlying mechanism however is still not clear. We, therefore examined the effect of long light exposure (16L:8D, LD1) and regular shift (8 h) in long nighttime (LD2) on endometrial changes of female golden hamsters. Morphometric analysis, scanning electron microscopy imaging, alcian blue staining, and cytological nuclear atypia of endometrial stromal cells confirmed the incidence of endometrial adenocarcinoma in LD2 exposed hamsters. But, less severe pathomorphological alterations were noted in uterus of LD1 exposed hamsters. Altered Aanat and Bmal1 mRNA, melatonin rhythm, downregulation of important marker gene of adenocarcinoma like Akt, 14-3-3, and PR protein expression and upregulation PKCα, pAkt-S473 and vascular epithelial growth factor (VEGF) were observed in LD2 exposed hamsters suggesting the endometrial adenocarcinoma. Further, our western blot analysis supported the immunohistochemical localization of PR, PKCα, and VEGF in uterine tissues along low progesterone. Overall, our data indicates that light shift and long light exposure potentially induced endometrioid adenocarcinoma via activation of PKC-α/Akt pathway in female hamsters. Therefore, duration of light is essential for female normal uterine function.


Subject(s)
Adenocarcinoma , Carcinoma, Endometrioid , Melatonin , Cricetinae , Animals , Female , Humans , Mesocricetus , Protein Kinase C-alpha , Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor A , Circadian Rhythm/physiology , Adenocarcinoma/pathology
2.
J Environ Manage ; 337: 117764, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36989918

ABSTRACT

P-Chloro-Meta-Xylenol (PCMX) is a widely used disinfectant. In the current pandemic scenario, its consumption has increased largely, and as a result, wastewater is loaded heavily with PCMX as a contaminant. Remediation of this ecologically toxic phenolic compound is therefore a burning issue. This study proposes an eco-friendly biosorption-based remediation technique to remove PCMX. A novel isolated phenol-resistant gram-negative bacterium, Pandoraea sp. strain BT102, is first encapsulated in biopolymeric calcium alginate beads. These beads are packed in a long adsorption tube and the contaminated water was passed through this packed tube resembling a plug flow reactor. This unique plug-flow set-up is capable of reducing PCMX concentration from 100 mg L-1 to 2.85 µg L-1 within 4 h using only 30 g of adsorbent, resulting in 99.99% removal efficiency. Adsorption isotherms and kinetics are studied using batch experimental data. A PCMX loading capacity of the encapsulated calcium alginate beads is found to be 961.7 mg g-1, and the Freundlich isotherm results suggested the phenomenon of cooperative adsorption. A good agreement of the pseudo-second-order kinetic model along with the intra-particle diffusion model suggests a multilayer diffusion-controlled adsorption process. Biosorption of PCMX by the bacterium-modified beads was confirmed by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Fourier-Transform Infrared spectroscopy (FT-IR) analyses. The application of multivariate model-based Response Surface Methodology (RSM) reveals flow rate to be the most important factor controlling the rate of bioremediation.


Subject(s)
Alginates , Water Pollutants, Chemical , Alginates/chemistry , Spectroscopy, Fourier Transform Infrared , Phenols/analysis , Bacteria , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
3.
Photochem Photobiol Sci ; 22(7): 1543-1559, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36826694

ABSTRACT

The Eclipta alba plant is considered hepatoprotective, owing to its phytoconstituents wedelolactone. In the current study, effect of elevated ultraviolet-B (eUV-B) radiation was investigated on biochemical, phytochemical, and antioxidative enzymatic activities of E. alba (Bhringraj) plant. The UV-B exposure resulted in an increase in oxidative stress, which has caused an imbalance in phytochemical, biochemical constituents, and induced antioxidative enzymatic activities. It was observed that the UV-B exposure promoted wedelolactone yield by 23.64%. Further, the leaf extract of UV-B-exposed plants was used for the synthesis of carbon quantum dots (CQDs) using low cost, one-step hydrothermal technique and its biocompatibility was studied using in vitro MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay on HepG2 liver cell line. It revealed no toxicity in any treatment groups in comparison to the control. Both CQDs and leaf extract were orally administered to the golden hamster suffering from alcohol-induced liver cirrhosis. In the morphometric study, it was clearly observed that a combination of UV-B-exposed leaf extract and synthesized CQDs delivered the best result with maximum recovery of liver tissues. The present study reveals the positive impact of UV-B exposure on the medicinally important plant, increased yield of wedelolactone, and its enhanced hepatoprotective efficacy for the treatment of damaged liver tissues.


Subject(s)
Eclipta , Quantum Dots , Animals , Cricetinae , Plant Extracts/pharmacology , Mesocricetus , Antioxidants/pharmacology , Liver Cirrhosis , Carbon/pharmacology
4.
J Photochem Photobiol B ; 234: 112508, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35841738

ABSTRACT

Coordination between central and peripheral reproductive clocks in females is poorly understood. Long light is having a hazardous effect on reproductive health. Hence, explored the effect of long-time light exposure (LLD; 16L:8D) on the central and peripheral reproductive (ovary and uterus) clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2) and its downstream regulators (Aanat, Egf, Cx26, Cx43, ERα, pAktS-473, pAktT-308, pFoxO1T-24, 14-3-3, HoxA10, HoxA11 and Pibf) expression in non-pregnant and pregnant Golden hamster. Young adult Golden hamsters were exposed to LLD for 30 days and then were mated. We observed that LLD exposure increased the thickness of the endometrium and reduced myometrium thickness, resembling uterine adenomyosis. In non-pregnant females LLD altered the expressions of clock genes in suprachiasmatic nuclei (SCN), ovary and the uterus along with serum estradiol rhythm. LLD upregulated Egf and downregulated Aanat, Cx26, and Cx43 mRNA levels in uterus. LLD upregulated Akt/FoxO1 phosphorylation and 14-3-3 expressions in the uterus of nonpregnant females. LLD exposure to pregnant females lowered serum progesterone, Aanat, Pibf, Hoxa10, and Hoxa11 mRNA expressions on D4 (peri-implantation) and D8 (post-implantation) resulting in a low implantation rate on D8 (post-implantation). Hence it is evident that the frequent pregnancy anomalies noted under a long light schedule might be due to desynchronization in Aanat, Pibf, Hoxa10, and Hoxa11 as well as the central and peripheral clock genes (Bmal1, Clock, Per1, Per2, Cry1 and Cry2). LLD exposure desynchronized the central and peripheral reproductive clock affecting uterine physiology via Akt/FoxO1 pathway in Golden hamsters. Thus, LLD is a risk factor for female reproductive health and fertility.


Subject(s)
ARNTL Transcription Factors , Connexin 43 , Animals , Circadian Rhythm/physiology , Cricetinae , Epidermal Growth Factor , Female , Mesocricetus , Pregnancy , Proto-Oncogene Proteins c-akt , RNA, Messenger/metabolism
5.
Inflammopharmacology ; 30(4): 1411-1429, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35430637

ABSTRACT

Cervical cancer is the most prevalent cancer in females. Melatonin, a neurohormone has been documented as a promising therapeutic molecule for cervical cancer. However, the underlying molecular mechanism is not known. We explored the dose-dependent anti-tumor response of melatonin against cervical cancer cell lines, HeLa (HPV-18 positive) and SiHa (HPV-16 positive). The anti-cancer effect of melatonin was evaluated by MTT assay, cell imaging, colony formation, DAPI, AO/PI, LDH, Flow cytometry, scratch assay, western blot analysis and real-time PCR. Results of DAPI, AO/PI, LDH, and Annexin/PI staining revealed that melatonin induces apoptosis. The results of cell cycle analysis revealed that melatonin arrests the HeLa and SiHa cells in sub-G1 and G1 phases, respectively. Western blot analysis revealed that melatonin downregulated the expression of pro-inflammatory transcription factor, NF-κB and the expression of COX-2 protein, a key mediator in cell proliferation. In addition, melatonin downregulated the expression of an invasive marker, MMP-9, an antiapoptotic protein, Bcl-2, and upregulated the expression of pro-apoptotic protein, Bax at both transcriptional and translational levels. Overall, the results suggest that melatonin exhibited strong anti-cancer therapeutic potential against human cervical cancer cell line progression possibly through inhibition of NF-κB signalling pathway.


Subject(s)
Melatonin , Uterine Cervical Neoplasms , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Female , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , NF-kappa B/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
6.
Photochem Photobiol Sci ; 21(7): 1217-1232, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35399124

ABSTRACT

AIMS: The mechanism behind clock coordination in female reproductive disorders is poorly understood despite the known importance of coordinated and synchronized timing of central and clocks in reproductive organs. We investigated the effect of continuous artificial light (LL) on the central and peripheral reproductive clock gene (Bmal1, Clock, Per1, Per2 and Cry1) and its downstream regulators (Hgf, PR-A and HOXA10) during non-pregnancy and pregnancy phases of female mice. MAIN METHODS: Mice (n = 60) in two sets, were maintained under continuous light (LL) and natural day cycle (LD;12L: 12D) for both non-pregnant and pregnant study. Tissues from hypothalamus-containing SCN, ovary, uterus and serum were collected at different zeitgeber time points (ZT; at 4-h intervals across 24-h periods). KEY FINDINGS: LL exposure desynchronized the expressions of the clock mRNAs (Bmal1, Clock, Per1, Per2 and Cry1) in SCN, ovary, and uterus along with Hgf mRNA rhythm. LL significantly increased the thickness of endometrial tissues. Furthermore, the pregnant study revealed lower serum progesterone level during peri- and post-implantation under LL along with downregulated expression of progesterone receptor (PR) as well as progesterone dependent uterine Homeobox A-10 (Hoxa10) proteins with lowered pregnancy outcomes. SIGNIFICANCE: Our result suggests that LL disrupted the circadian coordination between central and clock genes in reproductive tissue leading to interrupted uterine physiology and altered pregnancy in mice. This led us to propose that duration of light exposure at work-places or home for females is very important in prevention of pregnancy anomalies.


Subject(s)
Circadian Rhythm , Photoperiod , Uterus , Animals , Circadian Rhythm/physiology , Female , Hypothalamus , Mice , Pregnancy , Pregnancy Outcome , Progesterone/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Uterus/physiopathology
7.
RSC Adv ; 11(16): 9076-9085, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423422

ABSTRACT

Melatonin is a potent antioxidant, chemotherapeutic and chemo preventive agent against breast cancer. However, its short half-life is one of the major limitations in its application as a therapeutic drug. To overcome this issue, the green-emitting protein nanodot (PND) was synthesized by a one-step hydrothermal method for loading melatonin. The synthesized pH-7 and pH-2 PND showed a quantum yield of 22.1% and 14.0%, respectively. The physicochemical characterization of both PNDs showed similar morphological and functional activities. Furthermore, the biological efficacy of melatonin-loaded PND (MPND) was evaluated in a breast cancer cell line (MDA-MB-231) for live-cell imaging and enhanced nano-drug delivery efficacy. Interestingly, the permeability of neutral pH PND in both cell cytoplasm and nucleus nullifies the limitations of real-time live-cell imaging, and ensures nuclear drug delivery efficacy. Neutral pH PND showed better cell viability and cytotoxicity as a fluorescence bioimaging probe compared to acidic PND. The bioavailability and cell cytotoxicity effect of MPND on MDA-MB-231 breast cancer cells were studied through confocal and migration assay. Results showed that MPND causes enhanced bioavailability, better cellular uptake, and inhibition of the migration of breast cancer cells as compared to the drug alone. Besides, the synthesized MPND showed no sign of fluorescence quenching even at a high concentration of melatonin, making it an ideal nanocarrier for bioimaging and drug delivery.

8.
Chemosphere ; 248: 125998, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32006833

ABSTRACT

Malachite green is an N-methylated diaminophenylmethane dye that has generated much concern over its suggestive carcinogenic nature. After its excessive use in aquaculture industry as an effective ectoparasitide, much debate was raised over its toxicological effects leading to scientific studies conducted on animal models. Even after several bans, malachite green is still easily available in many parts of the world and unscrupulously even used to give green vegetables a fresher look. This study aims to address this concern by systematically studying the toxicological effects of malachite green through bioimaging in plant and animal cell and tissue. Sandalwood-derived carbon quantum dots have been used as a bioimaging tool since they are non-cytotoxic and show excellent fluorescence properties. Onion tissues demonstrate the translocation of the dye inside cells having high affinity for the nuclei and cell walls. Toxicological effects on the growth of Vigna radiata (mung beans) have been studied methodically. Bioimaging of the transverse cross-section of the dye-treated plant root shows a significant difference from the control. In animal cells, dose-dependent decrease in cell viability of MG-63 cells was observed with MG. CQD showed good fluorescence in both cytoplasm and nucleus of MG63 cells. In addition, CQDs were employed as a great tool for bioimaging of the histopathologically adverse effects of MG in Golden hamster animal model. This study showed CQDs could be used as an alternative non-site specific fluorescent probe for cell and tissue imaging for better visualization of cell and tissue architectural changes.


Subject(s)
Quantum Dots , Rosaniline Dyes/toxicity , Toxicity Tests/methods , Animals , Carbon , Fluorescent Dyes , Santalum
SELECTION OF CITATIONS
SEARCH DETAIL
...