Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(16): 24308-24326, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752412

ABSTRACT

Upconversion nanoparticles (UCNPs) are becoming increasingly popular as biological markers as they offer photo-stable imaging in the near-infrared (NIR) biological transparency window. Imaging at NIR wavelengths benefits from low auto-fluorescence background and minimal photo-damage. However, as the diffraction limit increases with the wavelength, the imaging resolution deteriorates. To address this limitation, recently two independent approaches have been proposed for imaging UCNPs with sub-diffraction resolution, namely stimulated emission-depletion (STED) microscopy and super linear excitation-emission (uSEE) microscopy. Both methods are very sensitive to the UCNP composition and the imaging conditions, i.e. to the excitation and depletion power. Here, we demonstrate that the imaging conditions can be chosen in a way that activates both super-resolution regimes simultaneously when imaging NaYF4:Yb,Tm UCNPs. The combined uSEE-STED mode benefits from the advantages of both techniques, allowing for imaging with lateral resolution about six times better than the diffraction limit due to STED and simultaneous improvement of the axial resolution about twice over the diffraction limit due to uSEE. Conveniently, at certain imaging conditions, the uSEE-STED modality can achieve better resolution at four times lower laser power compared to STED mode, making the method appealing for biological applications. We illustrate this by imaging UCNPs functionalized by colominic acid in fixed neuronal phenotype cells.

2.
Nat Commun ; 10(1): 3695, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420541

ABSTRACT

Sub-diffraction microscopy enables bio-imaging with unprecedented clarity. However, most super-resolution methods require complex, costly purpose-built systems, involve image post-processing and struggle with sub-diffraction imaging in 3D. Here, we realize a conceptually different super-resolution approach which circumvents these limitations and enables 3D sub-diffraction imaging on conventional confocal microscopes. We refer to it as super-linear excitation-emission (SEE) microscopy, as it relies on markers with super-linear dependence of the emission on the excitation power. Super-linear markers proposed here are upconversion nanoparticles of NaYF4, doped with 20% Yb and unconventionally high 8% Tm, which are conveniently excited in the near-infrared biological window. We develop a computational framework calculating the 3D resolution for any viable scanning beam shape and excitation-emission probe profile. Imaging of colominic acid-coated upconversion nanoparticles endocytosed by neuronal cells, at resolutions twice better than the diffraction limit both in lateral and axial directions, illustrates the applicability of SEE microscopy for sub-cellular biology.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence, Multiphoton/methods , Nanoparticles/ultrastructure , Neurons/ultrastructure , Animals , Endocytosis , PC12 Cells , Rats
3.
Nanoscale ; 9(23): 7719-7726, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28574081

ABSTRACT

Enhancing the efficiency of upconversion nanoparticles (UCNPs) and therefore their brightness is the critical goal for this emerging material to meet growing demands in many potential applications including sensing, imaging, solar energy conversion and photonics. The distribution of the photon sensitizer and activator ions that form a network of energy transfer systems within each single UCNP is vital for understanding and optimizing their optical properties. Here we employ synchrotron-based X-ray Photoelectron Spectroscopy (XPS) to characterize the depth distribution of Yb3+ sensitizer ions in host NaYF4 nanoparticles and systematically correlate the structure with the optical properties for a range of UCNPs with different sizes and doping concentrations. We find a radial gradient distribution of Yb3+ from the core to the surface of the NaYF4 nanoparticles, regardless of their size or the sensitizer's concentration. Energy dispersive X-ray Spectroscopy (EDX) was also used to further confirm the distribution of the sensitizer ions in the host matrix. These results have profound implications for the upconversion optical property variations.

4.
Int J Nanomedicine ; 10: 1521-45, 2015.
Article in English | MEDLINE | ID: mdl-25759578

ABSTRACT

The purpose of this study was to investigate the mechanisms responsible for the toxic effects of gold nanorods (AuNRs). Here, a comprehensive study was performed by examining the effects of bare (uncoated) AuNRs and AuNRs functionalized with silica (SiO2-AuNRs) against various mammalian cell lines, including cervical cancer cells, fibroblast cells, human umbilical vein endothelial cells, and neuroblastoma cells. The interactions between AuNRs and mammalian cells were investigated with cell viability and mortality assays. Dihydrorhodamine-123 assay was carried out for evaluating reactive oxygen species (ROS) generation, along with mass spectroscopy analysis for determining the composition of the protein corona. Our results suggest that even the lowest concentrations of AuNRs (0.7 µg/mL) induced ROS production leading to cell mortality. On the other hand, cellular viability and ROS production were maintained even at a higher concentration of SiO2-coated AuNRs (12 µg/mL). The increased production of ROS by AuNRs seemed to cause the toxicity observed in all four mammalian cell types. The protein corona on the bare AuNRs did not appear to reduce ROS generation; however, different compositions of the protein corona on bare and SiO2-coated AuNRs may affect cellular behavior differently. Therefore, it was determined that SiO2-coated AuNRs would be more advantageous than bare AuNRs for cellular applications.


Subject(s)
Gold , Nanotubes , Protein Corona , Cell Line , Cell Survival/drug effects , Gold/chemistry , Gold/toxicity , Humans , Nanotubes/chemistry , Nanotubes/toxicity , Protein Corona/analysis , Protein Corona/chemistry , Protein Corona/metabolism
5.
Int J Nanomedicine ; 9: 3707-18, 2014.
Article in English | MEDLINE | ID: mdl-25143723

ABSTRACT

The wide-scale applications of zinc oxide (ZnO) nanoparticles (NPs) in photocatalysts, gas sensors, and cosmetics may cause toxicity to humans and environments. Therefore, the aim of the present study was to reduce the toxicity of ZnO NPs by coating them with a silica (SiO2) layer, which could be used in human applications, such as cosmetic preparations. The sol-gel method was used to synthesize core ZnO with SiO2-shelled NPs (SiO2/ZnO NPs) with varying degrees of coating. Diverse studies were performed to analyze the toxicity of NPs against cells in a dose- and time-dependent manner. To ensure the decreased toxicity of the produced SiO2/ZnO NPs, cytotoxicity in membrane damage and/or intracellular reactive oxygen species (ROS) were assessed by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, 2',7'-dichlorofluorescin, and lipid peroxide estimations. The cores of ZnO NPs exhibited cytotoxicity over time, regardless of shell thickness. Nevertheless, the thicker SiO2/ZnO NPs revealed reduced enzyme leakage, decreased peroxide production, and less oxidative stress than their bare ZnO NPs or thinner SiO2/ZnO NPs. Therefore, thicker SiO2/ZnO NPs moderated the toxicity of ZnO NPs by restricting free radical formation and the release of zinc ions, and decreasing surface contact with cells.


Subject(s)
Cell Survival/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Cell Line , Cell Proliferation/drug effects , Cell Shape/drug effects , Fibroblasts/drug effects , Humans , Oxidative Stress/drug effects , Silicon Dioxide , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...