Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 149(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297991

ABSTRACT

Exponential proliferation of trophoblast stem cells (TSC) is crucial in Ruminantia to maximize numerical access to caruncles, the restricted uterine sites that permit implantation. When translating systems biology of the undifferentiated bovine trophectoderm, we uncovered that inhibition of RhoA/Rock promoted self-renewing proliferation and substantially increased blastocyst size. Analysis of transcripts suppressed by Rock inhibition revealed transforming growth factor ß1 (TGFß1) as a primary upstream effector. TGFß1 treatment induced changes consistent with differentiation in bTSCs, a response that could be replicated by induced expression of the bovine ROCK2 transgene. Rocki could partially antagonize TGFß1 effects, and TGFß receptor inhibition promoted proliferation identical to Rocki, indicating an all-encompassing upstream regulation. Morphological differentiation included formation of binucleate cells and infrequent multinucleate syncytia, features we also localize in the in vivo bovine placenta. Collectively, we demonstrate a central role for TGFß1, RhoA and Rock in inducing bTSC differentiation, attenuation of which is sufficient to sustain self-renewal and proliferation linked to blastocyst size and preimplantation development. Unraveling these mechanisms augments evolutionary/comparative physiology of the trophoblast cell lineage and placental development in eutherians.


Subject(s)
Cell Self Renewal , Trophoblasts , Animals , Blastocyst , Cattle , Cell Differentiation , Female , Placenta , Pregnancy
2.
Anim Sci J ; 90(9): 1149-1160, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322312

ABSTRACT

Mechanisms that direct reprogramming of differentiated somatic cells to induced pluripotent stem cells (iPSCs), albeit incomplete in understanding, are highly conserved across all mammalian species studied. Equally, proof of principle that iPSCs can be derived from domestic cattle has been reported in several publications. In our efforts to derive and study bovine iPSCs, we encountered inadequacy of methods to generate, sustain, and characterize these cells. Our results suggest that iPSC protocols optimized for mouse and human somatic cells do not effectively translate to bovine somatic cells, which show some refractoriness to reprogramming that also affects sustenance. Moreover, methods that enhance reprogramming efficiency in mouse and human cells had no effect on improving bovine cell reprogramming. Although use of retroviral vectors coding for bovine OCT4, SOX2, KLF4, cMYC, and NANOG appeared to produce consistent iPSC-like cells from both fibroblasts and cells from the Wharton's jelly, these colonies could not be sustained. Use of bovine genes could successfully reprogram both mouse and human cells. These findings indicated either incomplete reprogramming and/or discordant/inadequate culture conditions for bovine pluripotent stem cells. Therefore, additional studies that advance core knowledge of bovine pluripotency are necessary before any anticipated iPSC-driven bovine technologies can be realized.


Subject(s)
Cattle , Cellular Reprogramming , Genetic Vectors , Induced Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Animals , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics
3.
Biol Open ; 8(5)2019 May 01.
Article in English | MEDLINE | ID: mdl-30952696

ABSTRACT

Trophectoderm of blastocysts mediate early events in fetal-maternal communication, enabling implantation and establishment of a functional placenta. Inadequate or impaired developmental events linked to trophoblasts directly impact early embryo survival and successful implantation during a crucial period that corresponds with high incidence of pregnancy losses in dairy cows. As yet, the molecular basis of bovine trophectoderm development and signaling towards initiation of implantation remains poorly understood. In this study, we developed methods for culturing undifferentiated bovine blastocyst-derived trophoblasts and used both transcriptomics and proteomics in early colonies to categorize and elucidate their functional characteristics. A total of 9270 transcripts and 1418 proteins were identified and analyzed based on absolute abundance. We profiled an extensive list of growth factors, cytokines and other relevant factors that can effectively influence paracrine communication in the uterine microenvironment. Functional categorization and analysis revealed novel information on structural organization, extracellular matrix composition, cell junction and adhesion components, transcription networks, and metabolic preferences. Our data showcase the fundamental physiology of bovine trophectoderm and indicate hallmarks of the self-renewing undifferentiated state akin to trophoblast stem cells described in other species. Functional features uncovered are essential for understanding early events in bovine pregnancy towards initiation of implantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...