Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 72(7): 2067-2074, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36795122

ABSTRACT

INTRODUCTION: Patients treated with immune checkpoint inhibitors (ICIs) may not response to treatment and are at risk for immune-related adverse events (irAEs). Platelet function has been linked to both oncogenesis and immune evasion. We studied the association between the change in mean platelet volume (MPV), platelet count, survival, and the risk of developing irAEs in patients with metastatic non-small cell lung cancer (NSCLC) who have received first-line ICI. METHODS: In this retrospective study, delta (∆) MPV was defined as the difference between cycle 2 and baseline MPV. Patient data were collected via chart review, and Cox proportional hazard and Kaplan-Meier method were used to assess the risk and estimate median overall survival. RESULTS: We identified 188 patients treated with first-line pembrolizumab, with or without concurrent chemotherapy. There were 80 (42.6%) patients received pembrolizumab monotherapy, and 108 (57.4%) received pembrolizumab in combination with platinum-based chemotherapy. Patients whose MPV (∆MPV ≤ 0) decreased had hazard ratio (HR) = 0.64 (95% CI 0.43-0.94) for death with p = 0.023. Patients with ∆MPV ≤ - 0.2 fL (median), there was a 58% increase in the risk of developing irAE (HR = 1.58, 95% CI 1.04-2.40, p = 0.031). Thrombocytosis at baseline and cycle 2 was associated with shorter OS with p = 0.014 and 0.039, respectively. CONCLUSION: Change in MPV after 1 cycle of pembrolizumab-based treatment was significantly associated with overall survival as well as the occurrence of irAEs in patients with metastatic NSCLC in the first-line setting. In addition, thrombocytosis was associated with poor survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Thrombocytosis , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Mean Platelet Volume , Retrospective Studies , Thrombocytosis/drug therapy
2.
J Mol Cell Cardiol ; 89(Pt B): 349-59, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26455482

ABSTRACT

A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2Hz +/- Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to arrhythmias. These findings suggest that the human G109E inhibitor-1 variant impairs SR Ca-cycling and promotes arrhythmogenesis under stress conditions, which may present an additional insult in the compromised function of heart failure carriers.


Subject(s)
Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Polymorphism, Single Nucleotide/genetics , Proteins/genetics , Animals , Calcium/metabolism , Calcium Signaling/genetics , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Catecholamines/pharmacology , Diastole/drug effects , Heart/drug effects , Heart/physiopathology , Humans , Isoproterenol/pharmacology , Kinetics , Mice, Transgenic , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phosphorylation/drug effects , Proteins/metabolism , Rats , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...